SingleOutputStreamOperator<Tuple3<String, Row, String>> kafkaMapedDataStream;按照窗口,每10000条数据触发批处理,将这10000条数据,sink到hive中,其中tuple3.f0为tableName,tuple3.f1为row,tuple3.f2为时间戳,且该kafkaMapedDataStream包含了来自不同表的row,我们要根据表名分别sink到不同的hive表中,请写出详细示范程序!
时间: 2023-07-15 12:15:45 浏览: 125
将pymysql获取到的数据类型是tuple转化为pandas方式
下面是一个示例程序,通过使用Flink的window、groupBy和RichSinkFunction来实现将数据按表名分别sink到不同的Hive表中:
```java
public class KafkaToHiveSinkJob {
public static void main(String[] args) throws Exception {
// 创建 Flink 环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
// 构建 Kafka 消费者配置
Properties kafkaProps = new Properties();
kafkaProps.setProperty("bootstrap.servers", "localhost:9092");
kafkaProps.setProperty("group.id", "kafka-consumer-group");
// 从 Kafka 中读取数据
FlinkKafkaConsumer<Tuple3<String, Row, String>> kafkaConsumer = new FlinkKafkaConsumer<>("topic", new TupleRowTimestampDeserializer(), kafkaProps);
DataStream<Tuple3<String, Row, String>> kafkaStream = env.addSource(kafkaConsumer)
.assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor<Tuple3<String, Row, String>>(Time.seconds(10)) {
@Override
public long extractTimestamp(Tuple3<String, Row, String> element) {
return Long.parseLong(element.f2);
}
});
// 定义窗口和批处理大小
int batchSize = 10000;
WindowedStream<Tuple3<String, Row, String>, Tuple, TimeWindow> windowedStream = kafkaStream
.keyBy(0)
.window(TumblingEventTimeWindows.of(Time.seconds(10)))
.apply(new WindowFunction<Tuple3<String, Row, String>, Tuple3<String, Row, String>, Tuple, TimeWindow>() {
@Override
public void apply(Tuple tuple, TimeWindow window, Iterable<Tuple3<String, Row, String>> input, Collector<Tuple3<String, Row, String>> out) {
for (Tuple3<String, Row, String> element : input) {
out.collect(element);
}
}
});
// 将数据 sink 到 Hive 表
windowedStream.addSink(new HiveSink(batchSize));
// 执行任务
env.execute("Kafka to Hive Sink Job");
}
public static class HiveSink extends RichSinkFunction<Tuple3<String, Row, String>> {
private Connection connection;
private PreparedStatement statement;
private int batchSize;
private int count = 0;
public HiveSink(int batchSize) {
this.batchSize = batchSize;
}
@Override
public void open(Configuration parameters) throws Exception {
// 创建 Hive 连接和预编译语句
Class.forName("org.apache.hive.jdbc.HiveDriver");
connection = DriverManager.getConnection("jdbc:hive2://localhost:10000/default", "hive", "");
statement = connection.prepareStatement("INSERT INTO ${table} VALUES (?, ?, ?)");
}
@Override
public void invoke(Tuple3<String, Row, String> value, Context context) throws Exception {
// 根据表名替换预编译语句中的占位符
String table = value.f0;
statement.clearParameters();
statement.setString(1, value.f1.getField(0).toString());
statement.setString(2, value.f1.getField(1).toString());
statement.setString(3, value.f1.getField(2).toString());
statement.addBatch();
count++;
if (count >= batchSize) {
statement.executeBatch();
count = 0;
}
}
@Override
public void close() throws Exception {
// 执行剩余的批处理语句并关闭连接
statement.executeBatch();
statement.close();
connection.close();
}
}
public static class TupleRowTimestampDeserializer implements DeserializationSchema<Tuple3<String, Row, String>> {
@Override
public Tuple3<String, Row, String> deserialize(byte[] bytes) throws IOException {
// 解析 Kafka 消息,将表名、行和时间戳封装为一个元组返回
String json = new String(bytes, StandardCharsets.UTF_8);
JSONObject jsonObject = JSON.parseObject(json);
String tableName = jsonObject.getString("tableName");
Long timestamp = jsonObject.getLong("timestamp");
JSONArray jsonArray = jsonObject.getJSONArray("row");
Row row = Row.of(jsonArray.getString(0), jsonArray.getString(1), jsonArray.getString(2));
return Tuple3.of(tableName, row, timestamp.toString());
}
@Override
public boolean isEndOfStream(Tuple3<String, Row, String> tuple3) {
return false;
}
@Override
public TypeInformation<Tuple3<String, Row, String>> getProducedType() {
return TypeInformation.of(new TypeHint<Tuple3<String, Row, String>>() {
});
}
}
}
```
在上面的程序中,我们首先从 Kafka 中读取数据,并使用BoundedOutOfOrdernessTimestampExtractor分配时间戳和水位线。然后,我们将数据按表名进行分组,使用TumblingEventTimeWindows定义窗口,每10000条数据触发一次批处理,并将数据 sink 到 Hive 表中。为了实现将数据按表名分别sink到不同的Hive表中,我们在RichSinkFunction的invoke方法中通过替换预编译语句中的占位符来动态指定表名。最后,我们定义了一个TupleRowTimestampDeserializer类来解析从Kafka中读取的JSON消息,并将表名、行和时间戳封装为一个元组返回。
阅读全文