用python写一个完整的爬虫代码,爬虫可以爬取pc端微博的图片、内容、点赞数、评论数,并将内容、点赞数、评论数保存为xls格式

时间: 2024-06-09 11:08:13 浏览: 101
好的,以下是用 Python 编写的一个微博爬虫脚本,可以爬取 PC 端微博的图片、内容、点赞数、评论数,并将内容、点赞数、评论数保存为 xls 格式: ```python import requests from bs4 import BeautifulSoup import xlwt # 定义要爬取的微博页数 PAGE_NUM = 10 # 创建一个工作簿,并添加一个工作表 workbook = xlwt.Workbook(encoding = 'utf-8') worksheet = workbook.add_sheet('weibo') # 添加表头 worksheet.write(0, 0, '内容') worksheet.write(0, 1, '点赞数') worksheet.write(0, 2, '评论数') # 定义一个变量来记录行数 row_num = 1 # 循环爬取多页微博 for page in range(1, PAGE_NUM+1): # 构造请求的 URL url = 'https://weibo.com/?category=0&page=%d' % page # 发送 HTTP 请求 r = requests.get(url) # 解析 HTML 文档 soup = BeautifulSoup(r.text, 'html.parser') # 获取微博列表 weibos = soup.select('.WB_feed_detail') # 循环处理每一条微博 for weibo in weibos: # 获取微博内容 content = weibo.select('.WB_text')[0].text.strip() # 获取点赞数和评论数 like_count = int(weibo.select('.WB_handle .pos')[0].text.strip()) comment_count = int(weibo.select('.WB_handle .pos')[1].text.strip()) # 获取微博图片 imgs = weibo.select('.WB_media_wrap .WB_pic') img_urls = [] for img in imgs: img_urls.append(img['src']) # 将微博内容、点赞数、评论数写入工作表 worksheet.write(row_num, 0, content) worksheet.write(row_num, 1, like_count) worksheet.write(row_num, 2, comment_count) # 将行数加 1 row_num += 1 # 保存工作簿 workbook.save('weibo.xls') ``` 这个爬虫使用了 requests 库进行 HTTP 请求,使用了 BeautifulSoup 库解析 HTML 文档,并使用了 xlwt 库将数据保存为 xls 格式。你可以在代码中修改 PAGE_NUM 变量来指定要爬取的微博页数,也可以根据需要修改表头和保存的文件名。
阅读全文

相关推荐

zip
解锁网络数据的宝藏:Python爬虫工具与教程集合 一、探索网络信息的无限宝藏 在互联网的海洋中,蕴藏着海量的有价值信息。如何合法、高效地获取这些信息?Python爬虫工具与教程为您揭开这一神秘面纱。通过这些资源,您可以轻松地爬取网站信息,提取所需内容,为各种应用场景提供强大的数据支持。 二、资源亮点 工具齐全:提供一系列功能强大的Python爬虫工具,满足您不同场景下的需求。 教程详尽:配套的Python爬虫教程,从基础到进阶,让您逐步掌握爬虫的核心技术。 合法合规:严格遵守法律法规和网站使用协议,确保采集行为合法,尊重网站权益。 实战项目:结合实际案例,让您在实践中掌握Python爬虫的运用,真正做到学以致用。 三、适用人群 无论您是数据分析师、网络开发者还是对Python爬虫感兴趣的爱好者,这些资源都将为您的学习和实践提供有力的支持。 四、使用建议 按需选择工具与教程:根据实际需求选择合适的工具和教程,确保学习与实践的有效性。 遵守法律法规与协议:在使用这些资源进行爬取活动时,务必遵守相关法律法规和网站的使用协议。 持续学习与更新:随着网络技术的不断进步,Python爬虫技术也在不断发展。建议您持续关注相关动态,提升自己的技能水平。 五、安全与责任 尊重网站权益:避免对目标网站的正常运行造成干扰或损害,合理使用资源。 隐私保护:在采集数据时,严格遵守隐私保护法规,不泄露或滥用用户个人信息。 风险防范:了解并应对潜在的网络威胁,采取相应措施降低风险。 感谢您选择我们的Python爬虫工具与教程集合!让我们一起挖掘网络信息的宝藏,为您的工作和研究注入新的活力!请务必遵守法律法规和网站使用协议,共同维护网络数据的合法采集与利用。

最新推荐

recommend-type

Python爬虫进阶之多线程爬取数据并保存到数据库

今天刚看完崔大佬的《python3网络爬虫开发实战》,顿时觉得自己有行了,准备用appium登录QQ爬取列表中好友信息,接踵而来的是一步一步的坑,前期配置无数出错,安装之后连接也是好多错误,把这些错误解决之后,找APP...
recommend-type

Python3简单爬虫抓取网页图片代码实例

本实例将介绍如何使用Python3编写一个简单的爬虫程序来抓取网页上的图片。这个实例适用于初学者,因为它完全基于Python3的语法,避免了与Python2的兼容性问题。 首先,我们需要导入必要的库。`urllib.request`库...
recommend-type

基于python的百度迁徙迁入、迁出数据爬取(爬虫大数据)(附代码)

本文将介绍如何使用Python进行大数据爬取,特别关注百度迁徙数据的获取。百度迁徙是一个提供人口流动信息的在线平台,它展示了不同城市之间的迁入和迁出情况。通过爬虫技术,我们可以抓取这些数据并进行进一步的分析...
recommend-type

python爬虫框架scrapy实战之爬取京东商城进阶篇

在Python的Web爬虫领域,Scrapy是一个功能强大的框架,常被用于高效地爬取和处理网站数据。本篇文章将深入探讨如何使用Scrapy爬取京东商城的商品信息,特别关注动态加载的内容。 **一、Scrapy框架基础** Scrapy是...
recommend-type

Python爬取当当、京东、亚马逊图书信息代码实例

本文将探讨如何使用Python来爬取当当、京东、亚马逊这三个知名电商平台上的图书信息。 首先,要实现这个功能,我们需要安装一些必要的Python库,如BeautifulSoup、requests和pymysql。BeautifulSoup是一个用于解析...
recommend-type

全国江河水系图层shp文件包下载

资源摘要信息:"国内各个江河水系图层shp文件.zip" 地理信息系统(GIS)是管理和分析地球表面与空间和地理分布相关的数据的一门技术。GIS通过整合、存储、编辑、分析、共享和显示地理信息来支持决策过程。在GIS中,矢量数据是一种常见的数据格式,它可以精确表示现实世界中的各种空间特征,包括点、线和多边形。这些空间特征可以用来表示河流、道路、建筑物等地理对象。 本压缩包中包含了国内各个江河水系图层的数据文件,这些图层是以shapefile(shp)格式存在的,是一种广泛使用的GIS矢量数据格式。shapefile格式由多个文件组成,包括主文件(.shp)、索引文件(.shx)、属性表文件(.dbf)等。每个文件都存储着不同的信息,例如.shp文件存储着地理要素的形状和位置,.dbf文件存储着与这些要素相关的属性信息。本压缩包内还包含了图层文件(.lyr),这是一个特殊的文件格式,它用于保存图层的样式和属性设置,便于在GIS软件中快速重用和配置图层。 文件名称列表中出现的.dbf文件包括五级河流.dbf、湖泊.dbf、四级河流.dbf、双线河.dbf、三级河流.dbf、一级河流.dbf、二级河流.dbf。这些文件中包含了各个水系的属性信息,如河流名称、长度、流域面积、流量等。这些数据对于水文研究、环境监测、城市规划和灾害管理等领域具有重要的应用价值。 而.lyr文件则包括四级河流.lyr、五级河流.lyr、三级河流.lyr,这些文件定义了对应的河流图层如何在GIS软件中显示,包括颜色、线型、符号等视觉样式。这使得用户可以直观地看到河流的层级和特征,有助于快速识别和分析不同的河流。 值得注意的是,河流按照流量、流域面积或长度等特征,可以被划分为不同的等级,如一级河流、二级河流、三级河流、四级河流以及五级河流。这些等级的划分依据了水文学和地理学的标准,反映了河流的规模和重要性。一级河流通常指的是流域面积广、流量大的主要河流;而五级河流则是较小的支流。在GIS数据中区分河流等级有助于进行水资源管理和防洪规划。 总而言之,这个压缩包提供的.shp文件为我们分析和可视化国内的江河水系提供了宝贵的地理信息资源。通过这些数据,研究人员和规划者可以更好地理解水资源分布,为保护水资源、制定防洪措施、优化水资源配置等工作提供科学依据。同时,这些数据还可以用于教育、科研和公共信息服务等领域,以帮助公众更好地了解我国的自然地理环境。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Keras模型压缩与优化:减小模型尺寸与提升推理速度

![Keras模型压缩与优化:减小模型尺寸与提升推理速度](https://dvl.in.tum.de/img/lectures/automl.png) # 1. Keras模型压缩与优化概览 随着深度学习技术的飞速发展,模型的规模和复杂度日益增加,这给部署带来了挑战。模型压缩和优化技术应运而生,旨在减少模型大小和计算资源消耗,同时保持或提高性能。Keras作为流行的高级神经网络API,因其易用性和灵活性,在模型优化领域中占据了重要位置。本章将概述Keras在模型压缩与优化方面的应用,为后续章节深入探讨相关技术奠定基础。 # 2. 理论基础与模型压缩技术 ### 2.1 神经网络模型压缩
recommend-type

MTK 6229 BB芯片在手机中有哪些核心功能,OTG支持、Wi-Fi支持和RTC晶振是如何实现的?

MTK 6229 BB芯片作为MTK手机的核心处理器,其核心功能包括提供高速的数据处理、支持EDGE网络以及集成多个通信接口。它集成了DSP单元,能够处理高速的数据传输和复杂的信号处理任务,满足手机的多媒体功能需求。 参考资源链接:[MTK手机外围电路详解:BB芯片、功能特性和干扰滤波](https://wenku.csdn.net/doc/64af8b158799832548eeae7c?spm=1055.2569.3001.10343) OTG(On-The-Go)支持是通过芯片内部集成功能实现的,允许MTK手机作为USB Host与各种USB设备直接连接,例如,连接相机、键盘、鼠标等
recommend-type

点云二值化测试数据集的详细解读

资源摘要信息:"点云二值化测试数据" 知识点: 一、点云基础知识 1. 点云定义:点云是由点的集合构成的数据集,这些点表示物体表面的空间位置信息,通常由三维扫描仪或激光雷达(LiDAR)生成。 2. 点云特性:点云数据通常具有稠密性和不规则性,每个点可能包含三维坐标(x, y, z)和额外信息如颜色、反射率等。 3. 点云应用:广泛应用于计算机视觉、自动驾驶、机器人导航、三维重建、虚拟现实等领域。 二、二值化处理概述 1. 二值化定义:二值化处理是将图像或点云数据中的像素或点的灰度值转换为0或1的过程,即黑白两色表示。在点云数据中,二值化通常指将点云的密度或强度信息转换为二元形式。 2. 二值化的目的:简化数据处理,便于后续的图像分析、特征提取、分割等操作。 3. 二值化方法:点云的二值化可能基于局部密度、强度、距离或其他用户定义的标准。 三、点云二值化技术 1. 密度阈值方法:通过设定一个密度阈值,将高于该阈值的点分类为前景,低于阈值的点归为背景。 2. 距离阈值方法:根据点到某一参考点或点云中心的距离来决定点的二值化,距离小于某个值的点为前景,大于的为背景。 3. 混合方法:结合密度、距离或其他特征,通过更复杂的算法来确定点的二值化。 四、二值化测试数据的处理流程 1. 数据收集:使用相应的设备和技术收集点云数据。 2. 数据预处理:包括去噪、归一化、数据对齐等步骤,为二值化处理做准备。 3. 二值化:应用上述方法,对预处理后的点云数据执行二值化操作。 4. 测试与验证:采用适当的评估标准和测试集来验证二值化效果的准确性和可靠性。 5. 结果分析:通过比较二值化前后点云数据的差异,分析二值化效果是否达到预期目标。 五、测试数据集的结构与组成 1. 测试数据集格式:文件可能以常见的点云格式存储,如PLY、PCD、TXT等。 2. 数据集内容:包含了用于测试二值化算法性能的点云样本。 3. 数据集数量和多样性:根据实际应用场景,测试数据集应该包含不同类型、不同场景下的点云数据。 六、相关软件工具和技术 1. 点云处理软件:如CloudCompare、PCL(Point Cloud Library)、MATLAB等。 2. 二值化算法实现:可能涉及图像处理库或专门的点云处理算法。 3. 评估指标:用于衡量二值化效果的指标,例如分类的准确性、召回率、F1分数等。 七、应用场景分析 1. 自动驾驶:在自动驾驶领域,点云二值化可用于道路障碍物检测和分割。 2. 三维重建:在三维建模中,二值化有助于提取物体表面并简化模型复杂度。 3. 工业检测:在工业检测中,二值化可以用来识别产品缺陷或确保产品质量标准。 综上所述,点云二值化测试数据的处理是一个涉及数据收集、预处理、二值化算法应用、效果评估等多个环节的复杂过程,对于提升点云数据处理的自动化、智能化水平至关重要。