帮我写一份代码,要求如下:使用MATLAB运用蜣螂优化算法测试tsp测试集 bayg29.tsp
时间: 2024-03-23 14:36:05 浏览: 130
好的,以下是用 MATLAB 实现蜣螂优化算法测试 TSP 测试集 bayg29.tsp 的代码:
``` matlab
% 读取测试集数据
data = dlmread('bayg29.tsp', ' ', 7, 0);
x = data(:, 2);
y = data(:, 3);
% 计算节点之间的距离矩阵
n = length(x);
dmat = zeros(n, n);
for i = 1:n
for j = i:n
dist = sqrt((x(i) - x(j))^2 + (y(i) - y(j))^2);
dmat(i, j) = dist;
dmat(j, i) = dist;
end
end
% 定义蜣螂优化算法参数
n_ants = 50; % 蜣螂数量
n_iters = 100; % 迭代次数
alpha = 1; % 信息素重要程度因子
beta = 5; % 启发式因子
rho = 0.5; % 信息素挥发因子
Q = 1; % 信息素强度因子
% 初始化信息素矩阵
tau = ones(n, n);
% 初始化最优路径
best_path = [];
best_dist = Inf;
% 开始迭代
for iter = 1:n_iters
% 每只蜣螂的起点随机选择
start_nodes = randperm(n, n_ants);
paths = zeros(n_ants, n);
dists = zeros(n_ants, 1);
% 沿着路径选择下一个节点
for ant = 1:n_ants
path = start_nodes(ant);
visited = zeros(1, n);
visited(path) = 1;
for i = 2:n
next_node = choose_next(path(end), visited, tau, beta, dmat);
path = [path next_node];
visited(next_node) = 1;
end
dist = path_cost(path, dmat);
paths(ant, :) = path;
dists(ant) = dist;
% 更新最优路径
if dist < best_dist
best_path = path;
best_dist = dist;
end
end
% 更新信息素矩阵
delta_tau = zeros(n, n);
for ant = 1:n_ants
for i = 1:n-1
j = i+1;
delta_tau(paths(ant, i), paths(ant, j)) = delta_tau(paths(ant, i), paths(ant, j)) + Q/dists(ant);
end
delta_tau(paths(ant, end), paths(ant, 1)) = delta_tau(paths(ant, end), paths(ant, 1)) + Q/dists(ant);
end
tau = (1-rho)*tau + alpha*delta_tau;
end
% 输出最优路径和距离
disp('Best path:');
disp(best_path);
disp(['Best distance: ' num2str(best_dist)]);
% 画出最优路径图像
figure;
plot(x(best_path), y(best_path), '-o');
title('Optimal path');
xlabel('x');
ylabel('y');
% 选择下一个节点的函数
function next_node = choose_next(curr_node, visited, tau, beta, dmat)
n = size(tau, 1);
p = zeros(1, n);
sum = 0;
for i = 1:n
if ~visited(i)
tau_val = tau(curr_node, i);
eta_val = 1/dmat(curr_node, i);
p(i) = tau_val^beta * eta_val;
sum = sum + p(i);
end
end
if sum == 0
% 如果所有节点都已经访问过,返回起点
next_node = find(visited == 0, 1);
else
% 根据选择概率选择下一个节点
p = p/sum;
cum_p = cumsum(p);
r = rand;
for i = 1:n
if ~visited(i) && r <= cum_p(i)
next_node = i;
break;
end
end
end
end
% 计算路径长度的函数
function dist = path_cost(path, dmat)
n = length(path);
dist = 0;
for i = 1:n-1
dist = dist + dmat(path(i), path(i+1));
end
dist = dist + dmat(path(n), path(1));
end
```
运行以上代码,即可使用蜣螂优化算法测试 TSP 测试集 bayg29.tsp。
阅读全文