本次赛题主要是对穿戴式心电图中的 STC 进行识别与筛查,是一个多标签 分类任务。STE 与 STE 并不互斥,可能同时发生在同一心电的不同的到导联中。 所用心电图数据均为 12 导联,其采样频率为 500Hz,每个心电信号长度为 15s。 数据保存为.mat 格式的文件,标签信息存在于.mat 文件中并最后汇总在文件夹下 的 Excel 表中。数据集共包括 5000 份心电图,其中 4000 份心电图用于训练包含180份STE,180 份 STD,180 份同时存在 STE 与 STD,以及 3460 份其它样本 数据集的阳性样本与总样本比例约为 1:11,是一个典型的不平衡多 标签分类任务。本赛题旨在挖掘稀少样例中所包含的有效信息,解决数据中存在 的分布不平衡问题,在尽可能减少误警的情况下提升阳性样例的检出率。请给出auprc最高的python实现代码
时间: 2024-02-25 20:55:47 浏览: 72
以下是一个可能实现高AUPRC的Python代码,使用了PyTorch和sklearn库:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from sklearn.metrics import average_precision_score
import scipy.io as sio
import pandas as pd
import numpy as np
# 加载数据
train_data = sio.loadmat('train_data.mat')['data']
train_labels = pd.read_excel('train_labels.xlsx', index_col=0).values
# 定义数据集类
class ECGDataset(Dataset):
def __init__(self, data, labels):
self.data = data
self.labels = labels
def __len__(self):
return len(self.labels)
def __getitem__(self, idx):
return self.data[idx], self.labels[idx]
# 定义模型
class ECGNet(nn.Module):
def __init__(self):
super(ECGNet, self).__init__()
self.conv1 = nn.Conv1d(in_channels=12, out_channels=32, kernel_size=5)
self.pool1 = nn.MaxPool1d(kernel_size=2)
self.conv2 = nn.Conv1d(in_channels=32, out_channels=64, kernel_size=5)
self.pool2 = nn.MaxPool1d(kernel_size=2)
self.fc1 = nn.Linear(in_features=64*36, out_features=256)
self.fc2 = nn.Linear(in_features=256, out_features=4)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
x = self.pool1(torch.relu(self.conv1(x)))
x = self.pool2(torch.relu(self.conv2(x)))
x = x.view(-1, 64*36)
x = torch.relu(self.fc1(x))
x = self.sigmoid(self.fc2(x))
return x
# 训练模型
dataset = ECGDataset(train_data, train_labels)
dataloader = DataLoader(dataset, batch_size=32, shuffle=True)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = ECGNet().to(device)
criterion = nn.BCELoss()
optimizer = optim.Adam(model.parameters())
for epoch in range(10):
running_loss = 0.0
for i, data in enumerate(dataloader, 0):
inputs, labels = data
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
print('[Epoch %d] loss: %.3f' % (epoch + 1, running_loss / len(dataloader)))
# 预测并计算AUPRC
test_data = sio.loadmat('test_data.mat')['data']
test_labels = pd.read_excel('test_labels.xlsx', index_col=0).values
test_dataset = ECGDataset(test_data, test_labels)
test_dataloader = DataLoader(test_dataset, batch_size=32)
predictions = []
true_labels = []
with torch.no_grad():
for data in test_dataloader:
inputs, labels = data
inputs, labels = inputs.to(device), labels.to(device)
outputs = model(inputs)
predictions.append(outputs.cpu().numpy())
true_labels.append(labels.cpu().numpy())
predictions = np.concatenate(predictions, axis=0)
true_labels = np.concatenate(true_labels, axis=0)
auprc = average_precision_score(true_labels, predictions, average='weighted')
print('AUPRC: %.3f' % auprc)
```
请注意,这只是一个可能的实现,可能需要根据具体情况进行调整和优化。