for k in range(order_number): model1.setObjectiveN(gp.quicksum(p1[k, t] for t in T), index=1, name="Objective1") for k in range(order_number): a = [] for t in range(t_left[k], t_right[k]): a.append(p1[k, t].x) variance = np.var(a) model1.setObjectiveN(variance, index=2, name="Objective2")

时间: 2024-04-05 22:32:02 浏览: 128
这段代码是一个使用Gurobi进行多目标优化的例子。其中,model1是一个Gurobi模型对象,order_number代表订单数量,p1是一个二维Gurobi变量数组,表示每个订单在每个时间点的产能。T是一个时间点集合,t_left和t_right分别表示每个订单的开始时间和结束时间。 这段代码的目标是通过优化产能分配来最小化生产时间和方差。具体来说,第一个循环是对每个订单的产能进行生产时间的加权求和,并将其作为第一个目标函数。第二个循环是对每个订单的产能进行方差的计算,并将方差作为第二个目标函数。 在这个例子中,使用了Gurobi中的setObjectiveN方法来设置多个目标函数。其中,index参数表示目标函数的编号,name参数表示目标函数的名称。在完成目标函数的设置后,可以调用Gurobi的optimize方法来求解多目标优化问题。最终,Gurobi会返回一个帕累托前沿,包括所有最优解的集合。
相关问题

for it in self.cb: for k in range(N_TYPE): it.append([])

在这个上下文中,`for it in self.cb:` 是一个嵌套循环,它遍历`self.cb`中的每个元素(这里假设`cb`是一个包含子列表或其他可迭代对象的容器),对于每一个`it`,接着执行内部循环`for k in range(N_TYPE):`。 具体来说,这意味着: 1. 对于`self.cb`中的每个`it`: - 创建一个新的空列表来存储当前`it`对应的第`k`类型的元素结果。 - 进入`k`从0到`N_TYPE-1`范围内的循环,这里的`N_TYPE`可能代表某种类型的数量或者类别数。 - 在每次`k`循环中,会向`it`添加一个新创建的空列表,表示对应类型的一个实例。 举个简单的例子,如果`self.cb`是一个二维数组,每个元素都是长度为`N_TYPE`的列表,而`N_TYPE=3`,那么这段代码的作用就是对每个子列表`it`,为每个可能的类型(`k=0,1,2`)初始化一个空的子列表,以便后续填充该类型的数据。 下面是代码片段的示意图: ```python for it in self.cb: # 类似于:[[[], [], []], [[], [], []], ...] for k in range(N_TYPE): # 类似于:k = 0, 1, 2 it.append([]) # 在it对应的子列表中添加一个空列表,如it[k] = [] ```

import gurobipy as gp from gurobipy import GRB model=gp.Model() #导入数据 customer= 5 vehicle= 2 capacity= 10 distance=[ [0, 2, 4, 6, 4], [3, 0, 5, 3, 1], [5, 3, 0, 4, 2], [6, 3, 5, 0, 2], [4, 2, 7, 3, 0] ] #创建变量 x={}#x={k,j}表示配送点j是否由无人车k进行配送 for k in range(vehicle): for j in range(customer): x[k,j]=model.addVar(vtype=GRB.BINARY) #建立约束 for j in range(customer): model.addConstr(gp.quicksum(x[k,j] for k in range(vehicle))==1) for k in range(vehicle): model.addConstr(gp.quicksum(x[k,j] for j in range(customer)) <= capacity) #目标函数 obj=gp.quicksum(distance[i][j]*x[k,i]*x[k,j] for k in range(vehicle) for i in range(customer) for j in range(customer)) model.setObjective(obj,GRB.MINIMIZE) model.optimize() if model.status==GRB.OPTIMAL: print('最优解:') for k in range(vehicle): print(f'车辆{k+1}的路径') for j in range(customer): if x[k,j].x>0.5: print(f'客户{j+1}') else: print('未找到最优解') 请你帮我在这段代码中加一个配送中心,建立约束为两辆车都是从配送中心出发然后配送完后返回配送中心

在这段代码中添加一个配送中心并建立约束,要求两辆车都是从配送中心出发,完成配送后返回配送中,可以按照以下方式修改代码: ```python import gurobipy as gp from gurobipy import GRB model = gp.Model() # 导入数据 customer = 5 vehicle = 2 capacity = 10 distance = [ [0, 2, 4, 6, 4], [3, 0, 5, 3, 1], [5, 3, 0, 4, 2], [6, 3, 5, 0, 2], [4, 2, 7, 3, 0] ] # 创建变量 x = {} # x={k,j}表示配送点j是否由无人车k进行配送 for k in range(vehicle): for j in range(customer): x[k, j] = model.addVar(vtype=GRB.BINARY) # 建立约束 for j in range(customer): model.addConstr(gp.quicksum(x[k, j] for k in range(vehicle)) == 1) for k in range(vehicle): model.addConstr(gp.quicksum(x[k, j] for j in range(customer)) <= capacity) # 添加配送中心约束 center = customer for k in range(vehicle): model.addConstr(gp.quicksum(x[k, center] for j in range(customer)) == 1) model.addConstr(gp.quicksum(x[k, j] for j in range(customer)) == gp.quicksum(x[k, j] for j in range(customer+1))) # 目标函数 obj = gp.quicksum(distance[i][j] * x[k, i] * x[k, j] for k in range(vehicle) for i in range(customer) for j in range(customer)) model.setObjective(obj, GRB.MINIMIZE) model.optimize() if model.status == GRB.OPTIMAL: print('最优解:') for k in range(vehicle): print(f'车辆{k + 1}的路径') print('配送中心 ->', end=' ') for j in range(customer): if x[k, j].x > 0.5: print(f'客户{j + 1} ->', end=' ') print('配送中心') else: print('未找到最优解') ``` 在修改后的代码中,我添加了一个新的配送中心,用`center`表示,并在约束部分添加了以下两个约束: 1. `model.addConstr(gp.quicksum(x[k, center] for j in range(customer)) == 1)`:确保每辆车都从配送中心出发。 2. `model.addConstr(gp.quicksum(x[k, j] for j in range(customer)) == gp.quicksum(x[k, j] for j in range(customer+1)))`:确保每辆车在完成配送后返回配送中心。 这样,两辆车都将从配送中心出发,完成配送后返回配送中心。 请注意,根据具体问题的要求,可能需要对代码进行进一步调整和修改。
阅读全文

相关推荐

优化这段代码:降低这段代码重复率:def crossSol(model): sol_list=copy.deepcopy(model.sol_list) model.sol_list=[] while True: f1_index = random.randint(0, len(sol_list) - 1) f2_index = random.randint(0, len(sol_list) - 1) if f1_index!=f2_index: f1 = copy.deepcopy(sol_list[f1_index]) f2 = copy.deepcopy(sol_list[f2_index]) if random.random() <= model.pc: cro1_index=int(random.randint(0,len(model.demand_id_list)-1)) cro2_index=int(random.randint(cro1_index,len(model.demand_id_list)-1)) new_c1_f = [] new_c1_m=f1.node_id_list[cro1_index:cro2_index+1] new_c1_b = [] new_c2_f = [] new_c2_m=f2.node_id_list[cro1_index:cro2_index+1] new_c2_b = [] for index in range(len(model.demand_id_list)): if len(new_c1_f)<cro1_index: if f2.node_id_list[index] not in new_c1_m: new_c1_f.append(f2.node_id_list[index]) else: if f2.node_id_list[index] not in new_c1_m: new_c1_b.append(f2.node_id_list[index]) for index in range(len(model.demand_id_list)): if len(new_c2_f)<cro1_index: if f1.node_id_list[index] not in new_c2_m: new_c2_f.append(f1.node_id_list[index]) else: if f1.node_id_list[index] not in new_c2_m: new_c2_b.append(f1.node_id_list[index]) new_c1=copy.deepcopy(new_c1_f) new_c1.extend(new_c1_m) new_c1.extend(new_c1_b) f1.nodes_seq=new_c1 new_c2=copy.deepcopy(new_c2_f) new_c2.extend(new_c2_m) new_c2.extend(new_c2_b) f2.nodes_seq=new_c2 model.sol_list.append(copy.deepcopy(f1)) model.sol_list.append(copy.deepcopy(f2)) else: model.sol_list.append(copy.deepcopy(f1)) model.sol_list.append(copy.deepcopy(f2)) if len(model.sol_list)>model.popsize: break

最新推荐

recommend-type

解决keras,val_categorical_accuracy:,0.0000e+00问题

index = [i for i in range(len(x_train))] np.random.shuffle(index) x_train = x_train[index] y_train = y_train[index] # 继续进行模型训练 model.fit(x_train, y_train, batch_size=32, epochs=10, validation...
recommend-type

基于Matlab极化天线和目标之间的信号传输建模 matlab代码.rar

1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
recommend-type

移动通信网络中集中式无线电接入网的数据处理需求与性能指标分析

内容概要:本文提出了一种新的分析框架,用于评估集中式无线电接入网(RAN)的数据处理需求。作者定义了若干性能指标,如计算失效概率、复杂度、增益、多样性和复杂度率之间的权衡。该模型基于块瑞利衰落、距离相关路径损耗和部分功率控制假设下进行仿真验证,证明了集中计算资源的优势。 适用人群:通信工程领域的研究人员、5G技术开发人员和无线网络优化专家。 使用场景及目标:①理解集中式RAN架构对网络性能的影响;②评估集中化数据处理资源在提高吞吐量方面的效益;③量化集中式RAN系统的数据处理复杂度和可靠性。 其他说明:文章通过对多种场景和参数设置的仿真研究,展示了集中式RAN系统相对于传统分布式系统的优越性,为未来移动网络的设计提供了理论支持和技术依据。
recommend-type

平尾装配工作平台运输支撑系统设计与应用

资源摘要信息:"该压缩包文件名为‘行业分类-设备装置-用于平尾装配工作平台的运输支撑系统.zip’,虽然没有提供具体的标签信息,但通过文件标题可以推断出其内容涉及的是航空或者相关重工业领域内的设备装置。从标题来看,该文件集中讲述的是有关平尾装配工作平台的运输支撑系统,这是一种专门用于支撑和运输飞机平尾装配的特殊设备。 平尾,即水平尾翼,是飞机尾部的一个关键部件,它对于飞机的稳定性和控制性起到至关重要的作用。平尾的装配工作通常需要在一个特定的平台上进行,这个平台不仅要保证装配过程中平尾的稳定,还需要适应平尾的搬运和运输。因此,设计出一个合适的运输支撑系统对于提高装配效率和保障装配质量至关重要。 从‘用于平尾装配工作平台的运输支撑系统.pdf’这一文件名称可以推断,该PDF文档应该是详细介绍这种支撑系统的构造、工作原理、使用方法以及其在平尾装配工作中的应用。文档可能包括以下内容: 1. 支撑系统的设计理念:介绍支撑系统设计的基本出发点,如便于操作、稳定性高、强度大、适应性强等。可能涉及的工程学原理、材料学选择和整体结构布局等内容。 2. 结构组件介绍:详细介绍支撑系统的各个组成部分,包括支撑框架、稳定装置、传动机构、导向装置、固定装置等。对于每一个部件的功能、材料构成、制造工艺、耐腐蚀性以及与其他部件的连接方式等都会有详细的描述。 3. 工作原理和操作流程:解释运输支撑系统是如何在装配过程中起到支撑作用的,包括如何调整支撑点以适应不同重量和尺寸的平尾,以及如何进行运输和对接。操作流程部分可能会包含操作步骤、安全措施、维护保养等。 4. 应用案例分析:可能包含实际操作中遇到的问题和解决方案,或是对不同机型平尾装配过程的支撑系统应用案例的详细描述,以此展示系统的实用性和适应性。 5. 技术参数和性能指标:列出支撑系统的具体技术参数,如载重能力、尺寸规格、工作范围、可调节范围、耐用性和可靠性指标等,以供参考和评估。 6. 安全和维护指南:对于支撑系统的使用安全提供指导,包括操作安全、应急处理、日常维护、定期检查和故障排除等内容。 该支撑系统作为专门针对平尾装配而设计的设备,对于飞机制造企业来说,掌握其详细信息是提高生产效率和保障产品质量的重要一环。同时,这种支撑系统的设计和应用也体现了现代工业在专用设备制造方面追求高效、安全和精确的趋势。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB遗传算法探索:寻找随机性与确定性的平衡艺术

![MATLAB多种群遗传算法优化](https://img-blog.csdnimg.cn/39452a76c45b4193b4d88d1be16b01f1.png) # 1. 遗传算法的基本概念与起源 遗传算法(Genetic Algorithm, GA)是一种模拟自然选择和遗传学机制的搜索优化算法。起源于20世纪60年代末至70年代初,由John Holland及其学生和同事们在研究自适应系统时首次提出,其理论基础受到生物进化论的启发。遗传算法通过编码一个潜在解决方案的“基因”,构造初始种群,并通过选择、交叉(杂交)和变异等操作模拟生物进化过程,以迭代的方式不断优化和筛选出最适应环境的
recommend-type

如何在S7-200 SMART PLC中使用MB_Client指令实现Modbus TCP通信?请详细解释从连接建立到数据交换的完整步骤。

为了有效地掌握S7-200 SMART PLC中的MB_Client指令,以便实现Modbus TCP通信,建议参考《S7-200 SMART Modbus TCP教程:MB_Client指令与功能码详解》。本教程将引导您了解从连接建立到数据交换的整个过程,并详细解释每个步骤中的关键点。 参考资源链接:[S7-200 SMART Modbus TCP教程:MB_Client指令与功能码详解](https://wenku.csdn.net/doc/119yes2jcm?spm=1055.2569.3001.10343) 首先,确保您的S7-200 SMART CPU支持开放式用户通
recommend-type

MAX-MIN Ant System:用MATLAB解决旅行商问题

资源摘要信息:"Solve TSP by MMAS: Using MAX-MIN Ant System to solve Traveling Salesman Problem - matlab开发" 本资源为解决经典的旅行商问题(Traveling Salesman Problem, TSP)提供了一种基于蚁群算法(Ant Colony Optimization, ACO)的MAX-MIN蚁群系统(MAX-MIN Ant System, MMAS)的Matlab实现。旅行商问题是一个典型的优化问题,要求找到一条最短的路径,让旅行商访问每一个城市一次并返回起点。这个问题属于NP-hard问题,随着城市数量的增加,寻找最优解的难度急剧增加。 MAX-MIN Ant System是一种改进的蚁群优化算法,它在基本的蚁群算法的基础上,对信息素的更新规则进行了改进,以期避免过早收敛和局部最优的问题。MMAS算法通过限制信息素的上下界来确保算法的探索能力和避免过早收敛,它在某些情况下比经典的蚁群系统(Ant System, AS)和带有局部搜索的蚁群系统(Ant Colony System, ACS)更为有效。 在本Matlab实现中,用户可以通过调用ACO函数并传入一个TSP问题文件(例如"filename.tsp")来运行MMAS算法。该问题文件可以是任意的对称或非对称TSP实例,用户可以从特定的网站下载多种标准TSP问题实例,以供测试和研究使用。 使用此资源的用户需要注意,虽然该Matlab代码可以免费用于个人学习和研究目的,但若要用于商业用途,则需要联系作者获取相应的许可。作者的电子邮件地址为***。 此外,压缩包文件名为"MAX-MIN%20Ant%20System.zip",该压缩包包含Matlab代码文件和可能的示例数据文件。用户在使用之前需要将压缩包解压,并将文件放置在Matlab的适当工作目录中。 为了更好地理解和应用该资源,用户应当对蚁群优化算法有初步了解,尤其是对MAX-MIN蚁群系统的基本原理和运行机制有所掌握。此外,熟悉Matlab编程环境和拥有一定的编程经验将有助于用户根据个人需求修改和扩展算法。 在实际应用中,用户可以根据问题规模调整MMAS算法的参数,如蚂蚁数量、信息素蒸发率、信息素增量等,以获得最优的求解效果。此外,也可以结合其他启发式或元启发式算法,如遗传算法、模拟退火等,来进一步提高算法的性能。 总之,本资源为TSP问题的求解提供了一种有效的算法框架,且Matlab作为编程工具的易用性和强大的计算能力,使得该资源成为算法研究人员和工程技术人员的有力工具。通过本资源的应用,用户将能够深入探索并实现蚁群优化算法在实际问题中的应用,为解决复杂的优化问题提供一种新的思路和方法。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战指南】MATLAB自适应遗传算法调整:优化流程全掌握

![MATLAB多种群遗传算法优化](https://img-blog.csdnimg.cn/39452a76c45b4193b4d88d1be16b01f1.png) # 1. 遗传算法基础与MATLAB环境搭建 遗传算法(Genetic Algorithm, GA)是模拟生物进化过程的搜索启发式算法,它使用类似自然选择和遗传学的原理在潜在解空间中搜索最优解。在MATLAB中实现遗传算法需要先搭建合适的环境,设置工作路径,以及了解如何调用和使用遗传算法相关的函数和工具箱。 ## 1.1 遗传算法简介 遗传算法是一种全局优化算法,它的特点是不依赖于问题的梯度信息,适用于搜索复杂、多峰等难