def main(): # X坐标束条件 Min_pump_zcjj = 26 Max_pump_zcjj = 51 # Y坐标约束条件 Min_pump_bdljd = 26 Max_pump_bdljd = 51 # 靶点位置约束条件 Min_pump_bdwz = 0 Max_pump_bdwz = 1 # 射孔厚度约束条件 Min_pump_skhd = 1 Max_pump_skhd = 5 bounds = np.array([[Min_pump_zcjj, Max_pump_zcjj], [Min_pump_bdljd, Max_pump_bdljd],[Min_pump_bdwz, Max_pump_bdwz],[Min_pump_skhd, Max_pump_skhd]])
时间: 2024-02-14 15:13:41 浏览: 90
这是一个定义搜索空间的示例代码,其中 `bounds` 变量是一个 NumPy 数组,用于指定搜索空间的边界。在这个示例中,`bounds` 数组的每一行分别对应搜索空间的一个维度,包含两个元素,分别表示该维度的最小值和最大值。
例如,`bounds[0]` 表示搜索空间的第一个维度的边界,其中 `Min_pump_zcjj` 和 `Max_pump_zcjj` 分别表示该维度的最小值和最大值。在这个示例中,搜索空间共有四个维度,分别对应 X 坐标、Y 坐标、靶点位置和射孔厚度。
在使用 `bounds` 数组时,你可以将其作为选项字典的一部分传递给优化算法,例如:
```python
import cma
# 定义搜索空间边界
bounds = np.array([[Min_pump_zcjj, Max_pump_zcjj],
[Min_pump_bdljd, Max_pump_bdljd],
[Min_pump_bdwz, Max_pump_bdwz],
[Min_pump_skhd, Max_pump_skhd]])
# 使用 CMAEvolutionStrategy 对象进行优化
optimizer = cma.CMAEvolutionStrategy(
x0=[0, 0, 0, 0], # 初始搜索点
sigma0=1, # 初始搜索步长
inopts={'bounds': bounds}, # 搜索空间边界
)
```
在这个示例中,我们使用了 `inopts` 参数来传递包含搜索空间边界的选项字典。注意到我们将 `bounds` 数组作为选项字典的一部分传递给了优化算法,这样算法就能够根据搜索空间边界来生成新的搜索点。
阅读全文