#include <stdio.h> #include <stdlib.h> #include <malloc.h> typedef char data_t; typedef struct BiTNode { data_t data;//存放本节点数据 struct tree *l_child;//存放左孩子节点地址 struct tree *r_child;//存放右孩子节点地址 }BiTNode,*BiTree; void CreateBiTree(BiTree &T) { char ch,cin; cin>>ch; if(ch=='#') T=NULL; else{ T= new BiTNode; T->data=ch; CreateBiTree(T->l_child); CreateBiTree(T->r_child); } }

时间: 2024-02-26 21:53:46 浏览: 48
这段代码是二叉树的创建函数 CreateBiTree,它使用递归的方式创建一棵二叉树。函数的参数是一个指向 BiTree 类型的指针 T,用于存储二叉树的根节点地址。 在函数中,首先读入一个字符 ch,如果 ch 是 '#',说明当前节点为空节点,将 T 的值设为 NULL,并结束递归。否则,创建一个新的 BiTNode 节点,并将 ch 存储到节点的 data 成员中。然后,递归调用 CreateBiTree 函数,将返回的地址分别存储到当前节点的左孩子和右孩子中。 值得注意的是,结构体中的成员变量类型应该是 BiTree*,而不是 tree*,因为 BiTree 是一个指向 BiTNode 的指针类型,而不是结构体类型。
相关问题

#include<stdio.h> #include<stdlib.h> #include<string.h> typedef int DataType; void print(BiTree tree); BiTree CreatBiTree(); typedef struct Node{ DataType data; struct Node *LChild; struct Node *RChild; }BiTNode,* BiTree; void print(BiTree tree) { if(tree){ printf(tree->LChild); printf("%d",tree->data); printf(tree->RChild); } } BiTree CreatBiTree() { char ch; if(ch=='#') return NULL; else{ BiTree Node=((Node *)malloc(Node)); Node->LChild=CreatBiTree(); Node->data=ch; Node->RChild=CreatBiTree(); } } int main() { BiTree tree=NULL; tree=CreatBiTree(); print(tree); return 0; }找错误

这段代码中存在以下几个错误: 1. 缺少头文件定义,应该添加头文件:`#include "stdlib.h"`和`#include "string.h"`。 2. `BiTree`的定义应该在函数之前。 3. `CreatBiTree`函数中缺少输入,应该在函数内部添加一个读取输入字符的语句,例如:`scanf("%c",&ch);`。 4. 在`CreatBiTree`函数中,分配内存的语句应该是`Node=((BiTree)malloc(sizeof(BiTNode)));`,而不是`Node=((Node *)malloc(Node));`。 5. `print`函数中应该打印`tree->LChild`和`tree->RChild`的数据,而不是直接打印指针地址。应该改成:`print(tree->LChild); printf("%d",tree->data); print(tree->RChild);`。 下面是修改后的代码: ``` #include<stdio.h> #include<stdlib.h> #include<string.h> typedef int DataType; typedef struct Node{ DataType data; struct Node *LChild; struct Node *RChild; } BiTNode,* BiTree; BiTree CreatBiTree(); void print(BiTree tree); void print(BiTree tree) { if(tree){ print(tree->LChild); printf("%d",tree->data); print(tree->RChild); } } BiTree CreatBiTree() { char ch; scanf("%c",&ch); if(ch=='#') return NULL; else{ BiTree Node=((BiTree)malloc(sizeof(BiTNode))); Node->LChild=CreatBiTree(); Node->data=ch; Node->RChild=CreatBiTree(); return Node; } } int main() { BiTree tree=NULL; tree=CreatBiTree(); print(tree); return 0; } ```

#include<stdio.h> #include<stdlib.h> typedef struct BiTNode{ char data; struct BiTNode *lchild; struct BiTNode *rchild; }BiTNode,*Bintree; void CreateBinaryTree(Bintree *T){ char ch; scanf("%c",&ch); if(ch=='#') *T==NULL; else{ *T = (Bintree)malloc(sizeof(BiTNode)); (*T)->data = ch; CreateBinaryTree(&(*T)->lchild); CreateBinaryTree(&(*T)->rchild); } } void midOrder(Bintree T){ if(T){ midOrder(T->lchild); printf("%c",T->data); midOrder(T->rchild); } } int main() { Bintree T; CreateBinaryTree(&T); midOrder(T); return 0; }修改这段代码

代码中存在一个明显的错误,即第11行应该是赋值操作而不是等于操作。此外,函数名`midOrder`应该改为`inOrder`,以符合中序遍历的命名规范。修改后的代码如下: ```c #include <stdio.h> #include <stdlib.h> typedef struct BiTNode{ char data; struct BiTNode *lchild; struct BiTNode *rchild; } BiTNode, *Bintree; void CreateBinaryTree(Bintree *T){ char ch; scanf("%c", &ch); if (ch == '#') *T = NULL; else{ *T = (Bintree)malloc(sizeof(BiTNode)); (*T)->data = ch; CreateBinaryTree(&((*T)->lchild)); CreateBinaryTree(&((*T)->rchild)); } } void inOrder(Bintree T){ if (T){ inOrder(T->lchild); printf("%c", T->data); inOrder(T->rchild); } } int main(){ Bintree T; CreateBinaryTree(&T); inOrder(T); return 0; } ```

相关推荐

#define _CRT_SECURE_NO_WARNINGS #include<stdio.h> #include<string.h> #include<stdlib.h> typedef struct Node { char data; struct Node *LChild; struct Node *RChild; }BitNode,*BitTree; BitTree CreatBiTree(); bool PreOrder(BitTree bt); bool InOrder(BitTree bt); bool PostOrder(BitTree bt); int PostTreeDepth(BitTree bt); int main() { BitTree bt; int i; bt=CreatBiTree(); printf("请输入你要遍历的方式:"); scanf("%d\n",&i); if(i==-1) { PreOrder(bt); } else if(i==0) { PreOrder(bt); } else if(i==1) { InOrder(bt); } else { printf("无效方式!!\n"); } printf("此二叉树的深度是:"); PostTreeDepth(bt); return 0; } BitTree CreatBiTree() // 创建二叉树 { char data; BitTree bt; scanf("%c",&data); // 输入数据 if(data == '#')// 输入# 代表此节点下子树不存数据,也就是不继续递归创建 { return NULL; } else{ bt = (BitTree)malloc(sizeof(BitNode)); // 分配内存空间 bt->data = data; // 把当前输入的数据存入当前节点指针的数据域中 printf("请输入%s的左子树: ",data); bt->LChild = CreatBiTree(); // 开始递归创建左子树 printf("请输入%s的右子树: ",data); bt->RChild = CreatBiTree(); // 开始到上一级节点的右边递归创建左右子树 return bt; // 返回根节点 } } bool PreOrder(BitTree bt)//先序 { if(bt) { printf("%s\n",bt->data); PreOrder(bt->LChild); PreOrder(bt->RChild); } return true; } bool InOrder(BitTree bt)//中序 { if(bt) { InOrder(bt->LChild); printf("%s\n",bt->data); InOrder(bt->RChild); } return true; } bool PostOrder(BitTree bt)//后序 { if(bt) { PostOrder(bt->LChild); PostOrder(bt->RChild); printf("%s\n",bt->data); } return true; } int PostTreeDepth(BitTree bt)//深度 { int m,n; if(bt==NULL) return 0; else { m=PostTreeDepth(bt->LChild); n=PostTreeDepth(bt->RChild); if(m>n) return (m+1); else return (n+1); } }这段代码有什么问题

最新推荐

recommend-type

docker 安装教程.md

附件是docker安装教程,文件绿色安全,请大家放心下载,仅供交流学习使用,无任何商业目的!
recommend-type

数学建模算法与程序大全pdf电子书(司).zip

数学建模算法与程序大全pdf电子书(司).zip
recommend-type

使用node+socket搭建一个星铁聊天室

现代网页聊天应用是一款基于Node.js和Socket.IO的实时聊天系统,旨在为用户提供流畅且互动性强的在线聊天体验。该应用采用前后端分离的开发模式,前端使用HTML、CSS和JavaScript构建用户界面,后端使用Node.js和Socket.IO实现实时通信功能。应用支持文字、表情、图片、音频和视频等多种消息类型的发送和接收,用户可以通过头像选择器更换自己的头像,并且群主还拥有更改聊天室名称的特权。
recommend-type

IPD研发管理端到端流程详解.pptx

IPD研发管理端到端流程详解.pptx
recommend-type

智慧产业园区综合解决方案两份文件.pptx

智慧产业园区综合解决方案两份文件.pptx
recommend-type

数据结构课程设计:模块化比较多种排序算法

本篇文档是关于数据结构课程设计中的一个项目,名为“排序算法比较”。学生针对专业班级的课程作业,选择对不同排序算法进行比较和实现。以下是主要内容的详细解析: 1. **设计题目**:该课程设计的核心任务是研究和实现几种常见的排序算法,如直接插入排序和冒泡排序,并通过模块化编程的方法来组织代码,提高代码的可读性和复用性。 2. **运行环境**:学生在Windows操作系统下,利用Microsoft Visual C++ 6.0开发环境进行编程。这表明他们将利用C语言进行算法设计,并且这个环境支持高效的性能测试和调试。 3. **算法设计思想**:采用模块化编程策略,将排序算法拆分为独立的子程序,比如`direct`和`bubble_sort`,分别处理直接插入排序和冒泡排序。每个子程序根据特定的数据结构和算法逻辑进行实现。整体上,算法设计强调的是功能的分块和预想功能的顺序组合。 4. **流程图**:文档包含流程图,可能展示了程序设计的步骤、数据流以及各部分之间的交互,有助于理解算法执行的逻辑路径。 5. **算法设计分析**:模块化设计使得程序结构清晰,每个子程序仅在被调用时运行,节省了系统资源,提高了效率。此外,这种设计方法增强了程序的扩展性,方便后续的修改和维护。 6. **源代码示例**:提供了两个排序函数的代码片段,一个是`direct`函数实现直接插入排序,另一个是`bubble_sort`函数实现冒泡排序。这些函数的实现展示了如何根据算法原理操作数组元素,如交换元素位置或寻找合适的位置插入。 总结来说,这个课程设计要求学生实际应用数据结构知识,掌握并实现两种基础排序算法,同时通过模块化编程的方式展示算法的实现过程,提升他们的编程技巧和算法理解能力。通过这种方式,学生可以深入理解排序算法的工作原理,同时学会如何优化程序结构,提高程序的性能和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

STM32单片机小车智能巡逻车设计与实现:打造智能巡逻车,开启小车新时代

![stm32单片机小车](https://img-blog.csdnimg.cn/direct/c16e9788716a4704af8ec37f1276c4dc.png) # 1. STM32单片机简介及基础** STM32单片机是意法半导体公司推出的基于ARM Cortex-M内核的高性能微控制器系列。它具有低功耗、高性能、丰富的外设资源等特点,广泛应用于工业控制、物联网、汽车电子等领域。 STM32单片机的基础架构包括CPU内核、存储器、外设接口和时钟系统。其中,CPU内核负责执行指令,存储器用于存储程序和数据,外设接口提供与外部设备的连接,时钟系统为单片机提供稳定的时钟信号。 S
recommend-type

devc++如何监视

Dev-C++ 是一个基于 Mingw-w64 的免费 C++ 编程环境,主要用于 Windows 平台。如果你想监视程序的运行情况,比如查看内存使用、CPU 使用率、日志输出等,Dev-C++ 本身并不直接提供监视工具,但它可以在编写代码时结合第三方工具来实现。 1. **Task Manager**:Windows 自带的任务管理器可以用来实时监控进程资源使用,包括 CPU 占用、内存使用等。只需打开任务管理器(Ctrl+Shift+Esc 或右键点击任务栏),然后找到你的程序即可。 2. **Visual Studio** 或 **Code::Blocks**:如果你习惯使用更专业的
recommend-type

哈夫曼树实现文件压缩解压程序分析

"该文档是关于数据结构课程设计的一个项目分析,主要关注使用哈夫曼树实现文件的压缩和解压缩。项目旨在开发一个实用的压缩程序系统,包含两个可执行文件,分别适用于DOS和Windows操作系统。设计目标中强调了软件的性能特点,如高效压缩、二级缓冲技术、大文件支持以及友好的用户界面。此外,文档还概述了程序的主要函数及其功能,包括哈夫曼编码、索引编码和解码等关键操作。" 在数据结构课程设计中,哈夫曼树是一种重要的数据结构,常用于数据压缩。哈夫曼树,也称为最优二叉树,是一种带权重的二叉树,它的构造原则是:树中任一非叶节点的权值等于其左子树和右子树的权值之和,且所有叶节点都在同一层上。在这个文件压缩程序中,哈夫曼树被用来生成针对文件中字符的最优编码,以达到高效的压缩效果。 1. 压缩过程: - 首先,程序统计文件中每个字符出现的频率,构建哈夫曼树。频率高的字符对应较短的编码,反之则对应较长的编码。这样可以使得频繁出现的字符用较少的位来表示,从而降低存储空间。 - 接着,使用哈夫曼编码将原始文件中的字符转换为对应的编码序列,完成压缩。 2. 解压缩过程: - 在解压缩时,程序需要重建哈夫曼树,并根据编码序列还原出原来的字符序列。这涉及到索引编码和解码,通过递归函数如`indexSearch`和`makeIndex`实现。 - 为了提高效率,程序采用了二级缓冲技术,它能减少磁盘I/O次数,提高读写速度。 3. 软件架构: - 项目包含了两个可执行文件,`DosHfm.exe`适用于DOS系统,体积小巧,运行速度快;而`WinHfm.exe`则为Windows环境设计,提供了更友好的图形界面。 - 程序支持最大4GB的文件压缩,这是Fat32文件系统的限制。 4. 性能特点: - 除了基本的压缩和解压缩功能外,软件还提供了一些额外的特性,如显示压缩进度、文件一致性检查等。 - 哈夫曼编码的使用提高了压缩率,而二级缓冲技术使压缩速度提升了75%以上。 这个项目不仅展示了数据结构在实际问题中的应用,还体现了软件工程的实践,包括需求分析、概要设计以及关键算法的实现。通过这样的课程设计,学生可以深入理解数据结构和算法的重要性,并掌握实际编程技能。