def execute(self, batch_size): base = jt.log(self.vertices.abs() / (1 - self.vertices.abs())) centroid = jt.tanh(self.center) vertices = (base + self.displace).sigmoid() * nn.sign(self.vertices) vertices = nn.relu(vertices) * (1 - centroid) - nn.relu(-vertices) * (centroid + 1) vertices = vertices + centroid # apply Laplacian and flatten geometry constraints laplacian_loss = self.laplacian_loss(vertices).mean() flatten_loss = self.flatten_loss(vertices).mean() return jr.Mesh(vertices.repeat(batch_size, 1, 1), self.faces.repeat(batch_size, 1, 1), dr_type='n3mr'), laplacian_loss, flatten_loss在每行代码后添加注释
时间: 2024-03-10 18:49:16 浏览: 61
以下是每行代码的注释:
```python
def execute(self, batch_size):
# 计算顶点的基础值,用于后续位移和形变的计算
base = jt.log(self.vertices.abs() / (1 - self.vertices.abs()))
# 计算几何中心点
centroid = jt.tanh(self.center)
# 计算顶点的位移和形变
vertices = (base + self.displace).sigmoid() * nn.sign(self.vertices)
vertices = nn.relu(vertices) * (1 - centroid) - nn.relu(-vertices) * (centroid + 1)
vertices = vertices + centroid
# 应用 Laplacian 和 flatten 约束损失
laplacian_loss = self.laplacian_loss(vertices).mean()
flatten_loss = self.flatten_loss(vertices).mean()
# 返回优化后的模型、Laplacian 约束损失和 flatten 约束损失
return jr.Mesh(vertices.repeat(batch_size, 1, 1),
self.faces.repeat(batch_size, 1, 1), dr_type='n3mr'), laplacian_loss, flatten_loss
```
希望这些注释能够帮助您更好地理解这段代码的作用和功能。
阅读全文