基于CNN的网络入侵检测代码
时间: 2024-03-25 16:38:41 浏览: 64
基于CNN模型的网络入侵检测系统python源码+项目使用说明+超详细注释.zip
以下是一个基于CNN的网络入侵检测代码的示例:
```python
import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPooling2D
from keras.utils import np_utils
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
# 加载数据集
data = np.load('network_intrusion_data.npy')
X, y = data[:, :-1], data[:, -1]
# 对标签进行编码
encoder = LabelEncoder()
encoder.fit(y)
encoded_Y = encoder.transform(y)
dummy_y = np_utils.to_categorical(encoded_Y)
# 数据集划分
X_train, X_test, y_train, y_test = train_test_split(X, dummy_y, test_size=0.2, random_state=42)
# 构建模型
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=(X_train.shape[1], X_train.shape[2], 1)))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(dummy_y.shape[1], activation='softmax'))
# 编译模型
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
# 训练模型
model.fit(X_train, y_train, batch_size=128, epochs=10, verbose=1, validation_data=(X_test, y_test))
# 评估模型
score = model.evaluate(X_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
```
这个代码使用了Keras库,其中包含了一个卷积神经网络,用于对网络流量进行分类,判断是否存在入侵行为。代码中使用的数据集是一个已经标记好的网络流量数据集,可以用于训练和测试模型。在训练和测试模型时,使用了交叉熵作为损失函数,Adam优化器进行模型优化。最后,输出了模型在测试集上的损失值和准确率。
阅读全文