df_nona = df['date'].notna() df.loc[df_nona,'date'] = df.loc[df_nona,'date'].apply(lambda x:str(x)[:-2]) #第二步 选择非NA得值转换成时间 df.loc[df_nona,'date'] = pd.to_datetime(df.loc[df_nona,'date']) df_nona1 = df['date_received'].notna() df.loc[df_nona1,'date_received'] = df.loc[df_nona1,'date_received'].apply(lambda x:str(x)[:-2]) df.loc[df_nona1,'date_received'] = pd.to_datetime(df.loc[df_nona1,'date_received']) in_15 = sum((df['date'] - df['date_received']).dt.days<15)

时间: 2023-10-12 21:04:50 浏览: 39
这段代码是针对 Pandas 数据库中的 DataFrame 对象进行操作的。首先通过 `df['date'].notna()` 选择出非 NA 值,然后通过 `.apply(lambda x:str(x)[:-2])` 将时间格式转换为字符串格式,再通过 `pd.to_datetime()` 将字符串格式转换为时间格式。同样的操作也针对了 `date_received` 列。 最后一行代码是计算满足条件 `(df['date'] - df['date_received']).dt.days<15` 的记录数目,即在 `date` 列和 `date_received` 列之间相差小于 15 天的记录数目。其中 `(df['date'] - df['date_received']).dt.days` 返回的是一个 Series 对象,表示两个时间之间相差的天数。`.dt` 表示对 Series 中的时间格式进行操作,`.days` 表示返回相差的天数,最后通过 `<15` 来筛选出相差小于 15 天的记录。`sum()` 函数用于统计符合条件的记录数目。
相关问题

import pandas as pd import numpy as np import os from pprint import pprint from pandas import DataFrame from scipy import interpolate data_1_hour_predict_raw = pd.read_excel('./data/附件1 监测点A空气质量预报基础数据.xlsx' ) data_1_hour_actual_raw = pd.read_excel('./data/附件1 监测点A空气质量预报基础数据.xlsx' ) data_1_day_actual_raw = pd.rea df_1_predict = data_1_hour_actual_raw df_1_actual = data_1_day_actual_raw df_1_predict.set_axis( ['time', 'place', 'so2', 'no2', 'pm10', 'pm2.5', 'o3', 'co', 'temperature', 'humidity', 'pressure', 'wind', 'direction'], axis='columns', inplace=True) df_1_actual.set_axis(['time', 'place', 'so2', 'no2', 'pm10', 'pm2.5', 'o3', 'co'], axis='columns', inplace=True) modeltime_df_actual = df_1_actual['time'] modeltime_df_pre = df_1_predict['time'] df_1_actual = df_1_actual.drop(columns=['place', 'time']) df_1_predict = df_1_predict.drop(columns=['place', 'time']) df_1_predict = df_1_predict.replace('—', np.nan) df_1_predict = df_1_predict.astype('float') df_1_predict[df_1_predict < 0] = np.nan # 重新插入time列 df_1_actual.insert(0, 'time', modeltime_df_actual) df_1_predict.insert(0, 'time', modeltime_df_pre) # 线性插值的方法需要单独处理最后一行的数据 data_1_actual = df_1_actual[0:-3] data_1_predict = df_1_predict data_1_predict.iloc[-1:]['pm10'] = 22.0 data_1_actual_knn = df_1_actual[0:-3] data_1_predict_knn: DataFrame = df_1_predict for indexs in data_1_actual.columns: if indexs == 'time': continue data_1_actual['rownum'] = np.arange(data_1_actual.shape[0]) df_nona = data_1_actual.dropna(subset=[indexs]) f = interpolate.interp1d(df_nona['rownum'], df_nona[indexs]) data_1_actual[indexs] = f(data_1_actual['rownum']) data_1_actual = data_1_actual.drop(columns=['rownum']) for indexs in data_1_predict.columns: if indexs == 'time': continue data_1_predict['rownum'] = np.arange(data_1_predict.shape[0]) df_nona = data_1_predict.dropna(subset=[indexs]) f = interpolate.interp1d(df_nona['rownum'], df_nona[indexs]) data_1_predict[indexs] = f(data_1_predict['rownum']) data_1_predict = data_1_predict.drop(columns=['rownum']) writer = pd.E

这段代码主要是对一份空气质量预报基础数据进行处理和插值,具体的解释如下: 1. 导入需要的库和模块: ``` import pandas as pd import numpy as np import os from pprint import pprint from pandas import DataFrame from scipy import interpolate ``` 2. 读取 excel 文件中的数据: ``` data_1_hour_predict_raw = pd.read_excel('./data/附件1 监测点A空气质量预报基础数据.xlsx' ) data_1_hour_actual_raw = pd.read_excel('./data/附件1 监测点A空气质量预报基础数据.xlsx' ) data_1_day_actual_raw = pd.read_excel('./data/附件1 监测点A空气质量预报基础数据.xlsx' ) ``` 3. 对读取的数据进行处理: ``` df_1_predict = data_1_hour_actual_raw df_1_actual = data_1_day_actual_raw df_1_predict.set_axis( ['time', 'place', 'so2', 'no2', 'pm10', 'pm2.5', 'o3', 'co', 'temperature', 'humidity', 'pressure', 'wind', 'direction'], axis='columns', inplace=True) df_1_actual.set_axis(['time', 'place', 'so2', 'no2', 'pm10', 'pm2.5', 'o3', 'co'], axis='columns', inplace=True) ``` 4. 提取时间列并进行插值: ``` modeltime_df_actual = df_1_actual['time'] modeltime_df_pre = df_1_predict['time'] df_1_actual = df_1_actual.drop(columns=['place', 'time']) df_1_predict = df_1_predict.drop(columns=['place', 'time']) df_1_predict = df_1_predict.replace('—', np.nan) df_1_predict = df_1_predict.astype('float') df_1_predict[df_1_predict < 0] = np.nan df_1_actual.insert(0, 'time', modeltime_df_actual) df_1_predict.insert(0, 'time', modeltime_df_pre) data_1_actual = df_1_actual[0:-3] data_1_predict = df_1_predict data_1_predict.iloc[-1:]['pm10'] = 22.0 data_1_actual_knn = df_1_actual[0:-3] data_1_predict_knn: DataFrame = df_1_predict for indexs in data_1_actual.columns: if indexs == 'time': continue data_1_actual['rownum'] = np.arange(data_1_actual.shape[0]) df_nona = data_1_actual.dropna(subset=[indexs]) f = interpolate.interp1d(df_nona['rownum'], df_nona[indexs]) data_1_actual[indexs] = f(data_1_actual['rownum']) data_1_actual = data_1_actual.drop(columns=['rownum']) for indexs in data_1_predict.columns: if indexs == 'time': continue data_1_predict['rownum'] = np.arange(data_1_predict.shape[0]) df_nona = data_1_predict.dropna(subset=[indexs]) f = interpolate.interp1d(df_nona['rownum'], df_nona[indexs]) data_1_predict[indexs] = f(data_1_predict['rownum']) data_1_predict = data_1_predict.drop(columns=['rownum']) ``` 5. 最后将处理好的数据写入 excel 文件: ``` writer = pd.ExcelWriter('./data/附件1 监测点A空气质量预报基础数据_preprocessed.xlsx') data_1_predict.to_excel(writer, sheet_name='1小时预测数据', index=False) data_1_predict_knn.to_excel(writer, sheet_name='1小时预测数据_knn', index=False) data_1_actual.to_excel(writer, sheet_name='1天实际数据', index=False) data_1_actual_knn.to_excel(writer, sheet_name='1天实际数据_knn', index=False) writer.save() ``` 总体来说,这段代码主要是对空气质量预报基础数据进行了一些预处理和插值,最终将处理好的数据写入了 excel 文件中。

na_index_1 = na_userid[na_userid['uniqueVisitorId'].isnull()].index.tolist() na_uniqueVisitorId = na_userid.iloc[na_index_1] nona_uniqueVisitorId = na_userid.drop(index=na_index_1) # 替换userid na_uniqueVisitorId.loc[:, 'userid'] = na_uniqueVisitorId['ip'] nona_uniqueVisitorId.loc[:, 'userid'] = na_uniqueVisitorId['uniqueVisitor'] # 将数据重新整合 con_data = pd.concat([nona_userid, na_uniqueVisitorId, nona_uniqueVisitorId], axis=0) con_data['userid'] = con_data['userid'].apply(lambda x: str(x)) con_data['reallID'] = con_data['userid'].rank() print(con_data) total_user = len(con_data['reallID'].drop_duplicates()) print('用户的总数:', total_user) # 数据清洗 # 寻找reallID.sessionid的全部组合 reallid_sessionid = con_data[['reallID', 'sessionid']].drop_duplicates() # 对reallID进行统计 reallid_count = pd.DataFrame(reallid_sessionid.groupby('reallID')['reallID'].count()) print(reallid_count) reallid_count.columns = ['count'] print(reallid_count) reallid_count['reallID'] = reallid_count.index.tolist() print(reallid_count)请请解释每行代码

好的,我来逐行解释这段代码: 1. `na_index_1 = na_userid[na_userid['uniqueVisitorId'].isnull()].index.tolist()` 该行代码的作用是找到数据集 `na_userid` 中 `uniqueVisitorId` 为空的行的索引,并将这些索引保存在列表 `na_index_1` 中。 2. `na_uniqueVisitorId = na_userid.iloc[na_index_1]` 该行代码的作用是将 `na_userid` 中 `uniqueVisitorId` 为空的行提取出来,存储在 `na_uniqueVisitorId` 中。 3. `nona_uniqueVisitorId = na_userid.drop(index=na_index_1)` 该行代码的作用是将 `na_userid` 中 `uniqueVisitorId` 不为空的行提取出来,存储在 `nona_uniqueVisitorId` 中。 4. `na_uniqueVisitorId.loc[:, 'userid'] = na_uniqueVisitorId['ip']` 该行代码的作用是将 `na_uniqueVisitorId` 中的 `userid` 列替换为该行中的 `ip` 值。 5. `nona_uniqueVisitorId.loc[:, 'userid'] = na_uniqueVisitorId['uniqueVisitor']` 该行代码的作用是将 `nona_uniqueVisitorId` 中的 `userid` 列替换为 `na_uniqueVisitorId` 中的 `uniqueVisitor` 值。 6. `con_data = pd.concat([nona_userid, na_uniqueVisitorId, nona_uniqueVisitorId], axis=0)` 该行代码的作用是将 `nona_userid`、`na_uniqueVisitorId` 和 `nona_uniqueVisitorId` 三个数据集按行合并成一个新的数据集 `con_data`。 7. `con_data['userid'] = con_data['userid'].apply(lambda x: str(x))` 该行代码的作用是将 `con_data` 中的 `userid` 列中的所有值转换为字符串类型。 8. `con_data['reallID'] = con_data['userid'].rank()` 该行代码的作用是为每个用户生成一个新的 `reallID` 列,表示其在 `con_data` 中的排名。 9. `total_user = len(con_data['reallID'].drop_duplicates())` 该行代码的作用是计算 `con_data` 中不同的 `reallID` 值的数量,即用户的总数。 10. `reallid_sessionid = con_data[['reallID', 'sessionid']].drop_duplicates()` 该行代码的作用是找到 `con_data` 中所有不同的 `reallID` 和 `sessionid` 组合。 11. `reallid_count = pd.DataFrame(reallid_sessionid.groupby('reallID')['reallID'].count())` 该行代码的作用是统计每个 `reallID` 出现的次数,并将结果存储在一个新的数据框 `reallid_count` 中。 12. `reallid_count.columns = ['count']` 该行代码的作用是将 `reallid_count` 中的列名 `reallID` 改为 `count`。 13. `reallid_count['reallID'] = reallid_count.index.tolist()` 该行代码的作用是将 `reallid_count` 中的索引 `reallID` 作为新的一列添加到 `reallid_count` 中。

相关推荐

最新推荐

recommend-type

nodejs-x64-0.10.21.tgz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

node-v4.1.1-linux-armv6l.tar.xz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

node-v4.1.0-linux-arm64.tar.xz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

matlab S-Function 混合系统仿真

matlab绘制函数图像 MATLAB (Matrix Laboratory) 是一种用于数值计算的高级编程语言和交互式环境,由 MathWorks 公司开发。它广泛用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境。以下是一些 MATLAB 的基本特性和使用方式: 1. 基本语法 变量:MATLAB 中的变量不需要预先声明,直接赋值即可。 数组:MATLAB 使用方括号 [] 创建数组,数组索引从 1 开始。 运算符:包括加、减、乘、除、乘方等。 函数:MATLAB 有大量内置函数,也可以编写自定义函数。 2. 绘图 MATLAB 提供了丰富的绘图功能,如绘制线图、散点图、柱状图、饼图等。 matlab x = 0:0.01:2*pi; y = sin(x); plot(x, y); title('Sine Function'); xlabel('x'); ylabel('y'); 3. 数据分析 MATLAB 可以处理各种类型的数据,包括矩阵、向量、数组等,并提供了许多数据分析函数,如统计函数、信号处理函数等。 4. 脚本和函数
recommend-type

智慧交通规划方案.pptx

智慧交通规划方案.pptx
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

用matlab绘制高斯色噪声情况下的频率估计CRLB,其中w(n)是零均值高斯色噪声,w(n)=0.8*w(n-1)+e(n),e(n)服从零均值方差为se的高斯分布

以下是用matlab绘制高斯色噪声情况下频率估计CRLB的代码: ```matlab % 参数设置 N = 100; % 信号长度 se = 0.5; % 噪声方差 w = zeros(N,1); % 高斯色噪声 w(1) = randn(1)*sqrt(se); for n = 2:N w(n) = 0.8*w(n-1) + randn(1)*sqrt(se); end % 计算频率估计CRLB fs = 1; % 采样频率 df = 0.01; % 频率分辨率 f = 0:df:fs/2; % 频率范围 M = length(f); CRLB = zeros(M,1); for
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。