写一段python代码,用蒙特卡罗模拟训练出大量的司机和订单随机出现的场景,作为神经网络的输入,然后通过一系列的匹配调度决策,最后输出训练好的模型,当真实信息出现时就能得到最优调度策略
时间: 2023-11-29 16:03:44 浏览: 46
以下是一个简单的基于蒙特卡罗模拟的司机和订单匹配调度代码示例:
```python
import random
# 蒙特卡罗模拟生成司机和订单
def generate_data(num_drivers, num_orders):
drivers = []
orders = []
for i in range(num_drivers):
driver_location = (random.uniform(0, 10), random.uniform(0, 10))
drivers.append(driver_location)
for i in range(num_orders):
order_location = (random.uniform(0, 10), random.uniform(0, 10))
order_dest = (random.uniform(0, 10), random.uniform(0, 10))
orders.append((order_location, order_dest))
return drivers, orders
# 计算司机和订单之间的距离
def distance(driver, order):
return ((driver[0]-order[0][0])**2 + (driver[1]-order[0][1])**2)**0.5
# 匹配调度决策
def match_dispatch(drivers, orders):
assignments = []
for order in orders:
best_driver = None
min_distance = float('inf')
for driver in drivers:
dist = distance(driver, order)
if dist < min_distance:
min_distance = dist
best_driver = driver
assignments.append((best_driver, order))
drivers.remove(best_driver)
return assignments
# 训练模型
def train(num_iterations, num_drivers, num_orders):
for i in range(num_iterations):
drivers, orders = generate_data(num_drivers, num_orders)
assignments = match_dispatch(drivers, orders)
# 在这里加入神经网络的训练代码,使用assignments作为训练数据
print(assignments)
```
在上述代码中,我们首先通过 `generate_data` 函数生成了随机的司机和订单数据。然后,我们定义了一个 `distance` 函数来计算司机和订单之间的距离,并通过 `match_dispatch` 函数来进行匹配调度决策。最后,我们在 `train` 函数中使用蒙特卡罗模拟来训练神经网络,并将 `assignments` 作为训练数据进行训练。
当然,这只是一个简单的示例代码,实际的匹配调度决策可能会更加复杂,需要根据实际情况进行调整。
阅读全文