import numpy as np import sys from torchvision import transforms sys.path.append("..") def out_to_rgb(out,PALETTE,CLASSES): palette = np.array(PALETTE) assert palette.shape[0] == len(CLASSES) assert palette.shape[1] == 3 assert len(palette.shape) == 2 color_seg = np.zeros((out.shape[0], out.shape[1], 3), dtype=np.uint8) for label, color in enumerate(palette): color_seg[out == label, :] = color tran=transforms.ToTensor() color_seg=tran(color_seg) return color_seg def out_to_rgb_np(out,PALETTE,CLASSES): palette = np.array(PALETTE) assert palette.shape[0] == len(CLASSES) assert palette.shape[1] == 3 assert len(palette.shape) == 2 color_seg = np.zeros((out.shape[0], out.shape[1], 3), dtype=np.uint8) for label, color in enumerate(palette): color_seg[out == label, :] = color return color_seg
时间: 2024-03-04 08:52:10 浏览: 91
这段代码看起来是一个图像分割的函数,输入是一个经过模型预测得到的标签图像 out,以及 PALETTE 和 CLASSES 两个参数,PALETTE 是一个颜色调色板,每个类别都对应一种颜色;CLASSES 是一个类别列表,每个元素对应一个类别。输出是一个 RGB 图像,其中每个像素的颜色根据其对应的类别在 PALETTE 中取得。
其中 out_to_rgb_np 函数是不使用 torchvision.transforms.ToTensor 转换的版本,返回的是 numpy 数组类型的 RGB 图像。而 out_to_rgb 函数则是使用了 ToTensor 转换,返回的是 torch.Tensor 类型的 RGB 图像。
阅读全文