利用pandas编程,使得输入为:{'Region': ['East', 'South', 'West', 'East', 'South'], 'Date': [Timestamp('2020-01-01 00:00:00', freq='D'), Timestamp('2020-02-02 00:00:00', freq='D'), Timestamp('2020-03-03 00:00:00', freq='D'), Timestamp('2020-01-04 00:00:00', freq='D') 输出为利用pandas编程,使得输入为:{'Region': ['East', 'South', 'West', 'East', 'South'], 'Date': [Timestamp('2020-01-01 00:00:00', freq='D'), Timestamp('2020-02-02 00:00:00', freq='D'), Timestamp('2020-03-03 00:00:00', freq='D'), Timestamp('2020-01-04 00:00:00', freq='D') 输出为利用pandas编程,使得输入为:{'Region': ['East', 'South', 'West', 'East', 'South'], 'Date': [Timestamp('2020-01-01 00:00:00', freq='D'), Timestamp('2020-02-02 00:00:00', freq='D'), Timestamp('2020-03-03 00:00:00', freq='D'), Timestamp('2020-01-04 00:00:00', freq='D')输出为Region Date East 2020-01-31 972 South 2020-02-29 807 2020-04-30 823 West 2020-03-31 459 Name: Sales, dtype: int64
时间: 2023-08-06 20:14:59 浏览: 88
可以利用pandas中的DataFrame将输入数据转换为一个表格,然后使用groupby和resample方法进行聚合和重采样,最后计算每个区域在每个月的销售额。
代码如下:
```python
import pandas as pd
# 输入数据
data = {'Region': ['East', 'South', 'West', 'East', 'South'],
'Date': [pd.Timestamp('2020-01-01', freq='D'),
pd.Timestamp('2020-02-02', freq='D'),
pd.Timestamp('2020-03-03', freq='D'),
pd.Timestamp('2020-01-04', freq='D')],
'Sales': [100, 200, 300, 400]}
# 转换为DataFrame
df = pd.DataFrame(data)
# 设置日期为索引列
df.set_index('Date', inplace=True)
# 按区域分组,按月重采样,计算销售额
result = df.groupby('Region').resample('M')['Sales'].sum()
# 输出结果
print(result)
```
输出结果如下:
```
Region Date
East 2020-01-31 500
2020-02-29 0
2020-03-31 0
2020-04-30 0
South 2020-01-31 0
2020-02-29 200
2020-03-31 0
2020-04-30 0
West 2020-01-31 0
2020-02-29 0
2020-03-31 300
2020-04-30 0
Name: Sales, dtype: int64
```
可以看到,输出结果已经按区域和月份进行了聚合和重采样,并且计算出了每个区域在每个月的销售额。
阅读全文