蝙蝠算法求解八维函数最大值python
时间: 2023-08-31 13:12:58 浏览: 146
bat.rar_Fun_ Fun_ Fun_算法_蝙蝠_蝙蝠函数_蝙蝠算法求解多维函数最小值
以下是使用蝙蝠算法求解八维函数最大值的Python代码:
```python
import random
import math
# 定义目标函数
def obj_func(x):
return -(x[0]**2 + x[1]**2 + x[2]**2 + x[3]**2 + x[4]**2 + x[5]**2 + x[6]**2 + x[7]**2)
# 定义蝙蝠类
class Bat:
def __init__(self, dim, lower_bound, upper_bound):
self.dim = dim
self.lower_bound = lower_bound
self.upper_bound = upper_bound
self.position = [random.uniform(lower_bound, upper_bound) for i in range(dim)]
self.velocity = [0 for i in range(dim)]
self.frequency = 0
self.pulse_rate = 0
self.loudness = 0
self.best_position = self.position[:]
self.best_value = obj_func(self.position)
# 更新频率、脉冲率和响度
def update_params(self, best_bat, alpha, gamma):
self.frequency = random.uniform(0, 1)
self.pulse_rate = 1 - math.exp(-gamma * self.frequency)
self.loudness = alpha ** self.frequency
if random.uniform(0, 1) > self.pulse_rate:
for i in range(self.dim):
self.velocity[i] += (best_bat.position[i] - self.position[i]) * self.frequency
self.position[i] += self.velocity[i]
else:
for i in range(self.dim):
self.position[i] = best_bat.position[i] + random.uniform(-1, 1) * best_bat.loudness
# 确保位置在边界内
for i in range(self.dim):
if self.position[i] < self.lower_bound:
self.position[i] = self.lower_bound
if self.position[i] > self.upper_bound:
self.position[i] = self.upper_bound
# 更新最佳位置和最佳值
value = obj_func(self.position)
if value > self.best_value:
self.best_position = self.position[:]
self.best_value = value
# 初始化参数
dim = 8 # 变量维度
pop_size = 20 # 种群大小
max_iter = 100 # 最大迭代次数
alpha = 0.9 # 响度衰减系数
gamma = 0.9 # 脉冲率衰减系数
lower_bound = -10 # 变量下界
upper_bound = 10 # 变量上界
# 初始化种群
population = [Bat(dim, lower_bound, upper_bound) for i in range(pop_size)]
# 迭代优化
for t in range(max_iter):
# 更新每个蝙蝠的参数和位置
for bat in population:
best_bat = max(population, key=lambda x: x.best_value)
bat.update_params(best_bat, alpha, gamma)
# 输出当前最优解
best_bat = max(population, key=lambda x: x.best_value)
print("Iteration {}: Best Value = {:.6f}".format(t+1, -best_bat.best_value))
# 输出最终结果
best_bat = max(population, key=lambda x: x.best_value)
print("Best Solution: ", best_bat.best_position)
print("Best Value: ", -best_bat.best_value)
```
该代码使用了Python的面向对象编程思想,将蝙蝠定义为一个类,包含了蝙蝠的各种属性和方法。在主程序中,首先初始化种群,然后进行迭代优化,每次迭代更新每个蝙蝠的参数和位置,并输出当前最优解。最后输出最终结果,包括最优解和最优值。
阅读全文