基于googlenet的cifar10数据集用pytorch 并用正则化技术
时间: 2023-09-21 09:08:17 浏览: 127
cifar10 - pytorch - 模型源文件、train、test、use等源代码,kaggle上训练好的模型
5星 · 资源好评率100%
好的,我会为您解答这个问题。
基于GoogLeNet的CIFAR-10数据集的PyTorch实现可以分为以下几个步骤:
1. 导入所需的PyTorch库和CIFAR-10数据集。您可以使用PyTorch内置的CIFAR-10数据集,也可以从网上下载。
```python
import torch
import torchvision
import torchvision.transforms as transforms
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform_train)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=128,
shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=128,
shuffle=False, num_workers=2)
```
2. 定义GoogLeNet模型。这里我们使用PyTorch内置的GoogLeNet模型,也可以自己定义。
```python
import torch.nn as nn
import torch.nn.functional as F
from torchvision.models import googlenet
net = googlenet(pretrained=False)
net.fc = nn.Linear(1024, 10)
```
3. 定义损失函数和优化器。这里我们使用交叉熵损失函数和带正则化的随机梯度下降法。
```python
import torch.optim as optim
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9, weight_decay=5e-4)
```
4. 进行训练和测试。
```python
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
net.to(device)
for epoch in range(20): # 训练20个epoch
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data[0].to(device), data[1].to(device)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 100 == 99: # 每100个batch打印一次loss
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 100))
running_loss = 0.0
# 测试模型
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
images, labels = data[0].to(device), data[1].to(device)
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the 10000 test images: %d %%' % (
100 * correct / total))
```
在上述代码中,我们使用了随机梯度下降法作为优化器,并设置了weight_decay参数为5e-4,这是一种正则化技术。在训练过程中,每个epoch结束后,我们使用测试集测试模型的准确率。
阅读全文