torch.optim.Adam
时间: 2023-07-18 18:29:51 浏览: 101
关于torch.optim的灵活使用详解(包括重写SGD,加上L1正则)
`torch.optim.Adam` 是 PyTorch 中实现 Adam 优化算法的类。Adam 是一种常用的自适应学习率优化算法,它在梯度下降的基础上,根据梯度的一阶矩估计和二阶矩估计自适应地调整每个参数的学习率,从而更加高效地更新模型参数。
`torch.optim.Adam` 的常用参数包括:
- `params`:需要优化的参数列表,通常通过模型的 `parameters()` 方法获取;
- `lr`:学习率;
- `betas`:Adam 算法中用于计算梯度一阶矩估计和二阶矩估计的超参数,通常取值为 (0.9, 0.999);
- `eps`:Adam 算法中用于防止除以零的超参数;
- `weight_decay`:L2 正则化超参数;
- `amsgrad`:是否使用 AMSGrad 变种,默认为 False。
下面是 `torch.optim.Adam` 的一个简单示例:
```python
import torch
import torch.optim as optim
# 定义需要优化的参数
params = [torch.randn(2, 2, requires_grad=True), torch.randn(2, 2, requires_grad=True)]
# 定义优化器
optimizer = optim.Adam(params, lr=0.01)
# 在反向传播之后调用优化器的 step 方法更新参数
loss = torch.randn(1)
loss.backward()
optimizer.step()
```
这里定义了一个包含两个需要优化的参数的列表 `params`,然后创建了一个 `Adam` 优化器,并指定了学习率为 0.01。在反向传播计算梯度之后,可以调用 `step` 方法来更新模型参数。
阅读全文