import torch import matplotlib.pyplot as plt x_data=torch.Tensor([[1.0],[2.0],[3.0]]) y_data=torch.Tensor([[2.0],[4.0],[6.0]]) list1=[] list2=[] class LinearModel(torch.nn.Module): def init(self): super(LinearModel,self).init() self.linear=torch.nn.Linear(1,1) def forward(self,x): y_pred=self.linear(x) return y_pred model = LinearModel() criterion = torch.nn.MSELoss(size_average=False) optimizer = torch.optim.SGD(model.parameters(), lr=0.01) for epoch in range(100): y_pred=model(x_data) loss=criterion(y_pred,y_data) print(epoch,loss.item()) list1.append(loss.item()) list2.append(epoch) optimizer.zero_grad() loss.backward() optimizer.step() print('w=',model.linear.weight.item()) print('b=',model.linear.bias.item()) fig=plt.figure() ax=fig.add_subplot(111) ax.set(title='Adagrad',ylabel='loss',xlabel='time') ax.plot(list1,list2) x_test=torch.Tensor([[4.0]]) y_test=model(x_test) print('y_pred=',y_test.data) plt.show()用这段代码解决一个实际问题

时间: 2024-04-04 14:35:44 浏览: 46
这段代码可以用来解决一个简单的线性回归问题,即预测一个输出值Y与一个特征X的关系。因此,我们可以使用这段代码来解决一些简单的实际问题,例如: 假设我们有一个销售数据集,其中包含每个销售员的工作年限和销售额。我们可以将工作年限作为特征X,销售额作为输出值Y,使用这段代码来构建一个线性回归模型,从而预测一个新销售员的销售额。我们可以将数据集分为训练集和测试集,使用训练集来训练模型,然后使用测试集来评估模型的性能。 具体实现步骤如下: 1. 准备数据集:从数据集中提取特征X和输出值Y,将它们分别存储在x_data和y_data中,并将这些数据点可视化以了解它们之间的关系。 2. 定义模型:使用torch.nn.Linear(1,1)来定义一个线性回归模型,该模型将输入的一个特征映射到一个输出。 3. 定义损失函数和优化器:使用均方误差损失函数和随机梯度下降优化器,来计算损失并更新模型参数。 4. 训练模型:在一个循环中,使用训练集中的数据对模型进行训练,即执行前向传播、计算损失、反向传播、更新模型参数等操作。同时,记录每个epoch的损失值,以便后续可视化损失值的变化情况。 5. 测试模型:使用测试集中的数据对模型进行测试,并计算模型的预测准确率。 6. 可视化结果:将损失值随着epoch的变化情况可视化,以便了解模型的训练过程。同时,将模型的预测结果可视化,以便了解模型的预测性能。 总之,这段代码可以用来解决简单的线性回归问题,适用于一些小规模的实际问题。在实际应用中,需要根据具体问题进行适当的修改和调整。
相关问题

人工构造的数据集如下: import torch import matplotlib.pyplot as plt n_data = torch.ones(50, 2) x1 = torch.normal(2 * n_data, 1) y1 = torch.zeros(50) x2 = torch.normal(-2 * n_data, 1) y2 = torch.ones(50) x = torch.cat((x1, x2), 0).type(torch.FloatTensor) y = torch.cat((y1, y2), 0).type(torch.FloatTensor) 请用python从0实现logistic回归(只借助Tensor和Numpy相关的库)

要使用 Python 从零实现逻辑回归,只借助 Tensor 和 NumPy 相关的库,可以按照以下步骤进行操作: 1. 导入所需的库: ```python import numpy as np import torch ``` 2. 准备数据: ```python n_data = torch.ones(50, 2) x1 = torch.normal(2 * n_data, 1) y1 = torch.zeros(50) x2 = torch.normal(-2 * n_data, 1) y2 = torch.ones(50) x = torch.cat((x1, x2), 0).type(torch.FloatTensor) y = torch.cat((y1, y2), 0).type(torch.FloatTensor) ``` 3. 定义模型参数: ```python w = torch.randn(2, 1, requires_grad=True) # 权重参数 b = torch.zeros(1, requires_grad=True) # 偏置参数 ``` 4. 定义模型和损失函数: ```python def logistic_regression(x): return torch.sigmoid(torch.mm(x, w) + b) def cross_entropy(y_pred, y): return -torch.mean(y * torch.log(y_pred) + (1 - y) * torch.log(1 - y_pred)) ``` 5. 定义优化器和训练模型: ```python lr = 0.01 # 学习率 num_epochs = 1000 # 迭代次数 for epoch in range(num_epochs): # 前向传播 y_pred = logistic_regression(x) loss = cross_entropy(y_pred, y) # 反向传播和优化 loss.backward() # 计算梯度 with torch.no_grad(): w -= lr * w.grad # 更新权重参数 b -= lr * b.grad # 更新偏置参数 w.grad.zero_() # 清零梯度 b.grad.zero_() # 清零梯度 if (epoch+1) % 100 == 0: print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, loss.item())) ``` 6. 使用模型进行预测: ```python with torch.no_grad(): y_pred = logistic_regression(x) predicted = (y_pred >= 0.5).float() print('Predicted:', predicted) ``` 7. 可视化结果: ```python plt.scatter(x.data.numpy()[:, 0], x.data.numpy()[:, 1], c=predicted.numpy().flatten(), s=100, lw=0, cmap='RdYlGn') plt.show() ``` 这样就完成了从零实现逻辑回归的过程。请注意,这里使用了 PyTorch 的自动求导功能来计算梯度,并且使用了 NumPy 进行数据可视化。

import torch import matplotlib.pyplot as plt x_data=torch.Tensor([[1.0],[2.0],[3.0]]) y_data=torch.Tensor([[2.0],[4.0],[6.0]]) list1=[] list2=[] class LinearModel(torch.nn.Module): def __init__(self): super(LinearModel,self).__init__() self.linear=torch.nn.Linear(1,1) def forward(self,x): y_pred=self.linear(x) return y_pred model = LinearModel() criterion = torch.nn.MSELoss(size_average=False) optimizer = torch.optim.SGD(model.parameters(), lr=0.01) for epoch in range(100): y_pred=model(x_data) loss=criterion(y_pred,y_data) print(epoch,loss.item()) list1.append(loss.item()) list2.append(epoch) optimizer.zero_grad() loss.backward() optimizer.step() print('w=',model.linear.weight.item()) print('b=',model.linear.bias.item()) fig=plt.figure() ax=fig.add_subplot(111) ax.set(title='Adagrad',ylabel='loss',xlabel='time') ax.plot(list1,list2) x_test=torch.Tensor([[4.0]]) y_test=model(x_test) print('y_pred=',y_test.data) plt.show()给我讲一下这个代码

这是一个使用PyTorch实现的线性回归模型的代码。首先,定义了输入数据x_data和对应的输出数据y_data。然后,定义了一个继承自torch.nn.Module的线性模型LinearModel,其中包括一个线性层self.linear。forward函数用于计算模型的输出y_pred。接下来,定义了损失函数criterion和优化器optimizer。在循环中,模型进行100次训练,每一次都计算出当前的预测值y_pred和损失loss,并将损失值和循环次数分别存入list1和list2中。然后,使用优化器进行反向传播和权重更新。最后,输出模型的权重和偏置,并绘制出损失随时间的变化曲线。最后,用模型进行了一次测试,并输出了预测值y_pred。
阅读全文

相关推荐

修改一下这段代码在pycharm中的实现,import pandas as pd import numpy as np from sklearn.model_selection import train_test_split import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim #from torchvision import datasets,transforms import torch.utils.data as data #from torch .nn:utils import weight_norm import matplotlib.pyplot as plt from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.metrics import f1_score from sklearn.metrics import cohen_kappa_score data_ = pd.read_csv(open(r"C:\Users\zhangjinyue\Desktop\rice.csv"),header=None) data_ = np.array(data_).astype('float64') train_data =data_[:,:520] train_Data =np.array(train_data).astype('float64') train_labels=data_[:,520] train_labels=np.array(train_data).astype('float64') train_data,train_data,train_labels,train_labels=train_test_split(train_data,train_labels,test_size=0.33333) train_data=torch.Tensor(train_data) train_data=torch.LongTensor(train_labels) train_data=train_data.reshape(-1,1,20,26) train_data=torch.Tensor(train_data) train_data=torch.LongTensor(train_labels) train_data=train_data.reshape(-1,1,20,26) start_epoch=1 num_epoch=1 BATCH_SIZE=70 Ir=0.001 classes=('0','1','2','3','4','5') device=torch.device("cuda"if torch.cuda.is_available()else"cpu") torch.backends.cudnn.benchmark=True best_acc=0.0 train_dataset=data.TensorDataset(train_data,train_labels) test_dataset=data.TensorDataset(train_data,train_labels) train_loader=torch.utills.data.DataLoader(dtaset=train_dataset,batch_size=BATCH_SIZE,shuffle=True) test_loader=torch.utills.data.DataLoader(dtaset=train_dataset,batch_size=BATCH_SIZE,shuffle=True)

下面的这段python代码,哪里有错误,修改一下:import numpy as np import matplotlib.pyplot as plt import pandas as pd import torch import torch.nn as nn from torch.autograd import Variable from sklearn.preprocessing import MinMaxScaler training_set = pd.read_csv('CX2-36_1971.csv') training_set = training_set.iloc[:, 1:2].values def sliding_windows(data, seq_length): x = [] y = [] for i in range(len(data) - seq_length): _x = data[i:(i + seq_length)] _y = data[i + seq_length] x.append(_x) y.append(_y) return np.array(x), np.array(y) sc = MinMaxScaler() training_data = sc.fit_transform(training_set) seq_length = 1 x, y = sliding_windows(training_data, seq_length) train_size = int(len(y) * 0.8) test_size = len(y) - train_size dataX = Variable(torch.Tensor(np.array(x))) dataY = Variable(torch.Tensor(np.array(y))) trainX = Variable(torch.Tensor(np.array(x[1:train_size]))) trainY = Variable(torch.Tensor(np.array(y[1:train_size]))) testX = Variable(torch.Tensor(np.array(x[train_size:len(x)]))) testY = Variable(torch.Tensor(np.array(y[train_size:len(y)]))) class LSTM(nn.Module): def __init__(self, num_classes, input_size, hidden_size, num_layers): super(LSTM, self).__init__() self.num_classes = num_classes self.num_layers = num_layers self.input_size = input_size self.hidden_size = hidden_size self.seq_length = seq_length self.lstm = nn.LSTM(input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, batch_first=True) self.fc = nn.Linear(hidden_size, num_classes) def forward(self, x): h_0 = Variable(torch.zeros( self.num_layers, x.size(0), self.hidden_size)) c_0 = Variable(torch.zeros( self.num_layers, x.size(0), self.hidden_size)) # Propagate input through LSTM ula, (h_out, _) = self.lstm(x, (h_0, c_0)) h_out = h_out.view(-1, self.hidden_size) out = self.fc(h_out) return out num_epochs = 2000 learning_rate = 0.001 input_size = 1 hidden_size = 2 num_layers = 1 num_classes = 1 lstm = LSTM(num_classes, input_size, hidden_size, num_layers) criterion = torch.nn.MSELoss() # mean-squared error for regression optimizer = torch.optim.Adam(lstm.parameters(), lr=learning_rate) # optimizer = torch.optim.SGD(lstm.parameters(), lr=learning_rate) runn = 10 Y_predict = np.zeros((runn, len(dataY))) # Train the model for i in range(runn): print('Run: ' + str(i + 1)) for epoch in range(num_epochs): outputs = lstm(trainX) optimizer.zero_grad() # obtain the loss function loss = criterion(outputs, trainY) loss.backward() optimizer.step() if epoch % 100 == 0: print("Epoch: %d, loss: %1.5f" % (epoch, loss.item())) lstm.eval() train_predict = lstm(dataX) data_predict = train_predict.data.numpy() dataY_plot = dataY.data.numpy() data_predict = sc.inverse_transform(data_predict) dataY_plot = sc.inverse_transform(dataY_plot) Y_predict[i,:] = np.transpose(np.array(data_predict)) Y_Predict = np.mean(np.array(Y_predict)) Y_Predict_T = np.transpose(np.array(Y_Predict))

修改import torch import torchvision.models as models vgg16_model = models.vgg16(pretrained=True) import torch.nn as nn import torch.nn.functional as F import torchvision.transforms as transforms from PIL import Image # 加载图片 img_path = "pic.jpg" img = Image.open(img_path) # 定义预处理函数 preprocess = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) # 预处理图片,并添加一个维度(batch_size) img_tensor = preprocess(img).unsqueeze(0) # 提取特征 features = vgg16_model.features(img_tensor) import numpy as np import matplotlib.pyplot as plt def deconv_visualization(model, features, layer_idx, iterations=30, lr=1, figsize=(10, 10)): # 获取指定层的输出特征 output = features[layer_idx] # 定义随机输入张量,并启用梯度计算 #input_tensor = torch.randn(output.shape, requires_grad=True) input_tensor = torch.randn(1, 3, output.shape[2], output.shape[3], requires_grad=True) # 定义优化器 optimizer = torch.optim.Adam([input_tensor], lr=lr) for i in range(iterations): # 将随机张量输入到网络中,得到对应的输出 model.zero_grad() #x = model.features(input_tensor) x = model.features:layer_idx # 计算输出与目标特征之间的距离,并进行反向传播 loss = F.mse_loss(x[layer_idx], output) loss.backward() # 更新输入张量 optimizer.step() # 反归一化 input_tensor = (input_tensor - input_tensor.min()) / (input_tensor.max() - input_tensor.min()) # 将张量转化为numpy数组 img = input_tensor.squeeze(0).detach().numpy().transpose((1, 2, 0)) # 绘制图像 plt.figure(figsize=figsize) plt.imshow(img) plt.axis("off") plt.show() # 可视化第一层特征 deconv_visualization(vgg16_model, features, 0)使其不产生报错IndexError: tuple index out of range

最新推荐

recommend-type

数学建模学习资料 姜启源数学模型课件 M04 数学规划模型 共85页.pptx

数学建模学习资料 姜启源数学模型课件 M04 数学规划模型 共85页.pptx
recommend-type

【大越期货-2024研报】生猪期货早报.pdf

研究报告
recommend-type

数学建模学习资料 姜启源数学模型课件 M07 差分方程模型 共33页.pptx

数学建模学习资料 姜启源数学模型课件 M07 差分方程模型 共33页.pptx
recommend-type

【宝城期货-2024研报】宝城期货品种套利数据日报.pdf

研究报告
recommend-type

从头开始的 YOLOv1.zip

从头开始的 YOLOv1自述YOLOv1 的实现来自博客必需的pytorch 1.1.0火炬视觉numpy > 1.16.2opencv 3.4.1VOC2012数据集这个 repo 现在能做什么使用VOC2012数据集进行训练推理(测试图像)结果待办事项添加 mAP 指标
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。