N32G45x TIM3定时1ms产生更新中断(用IO翻转,逻辑分析仪测量1ms时间)。ADC测量3个通道(通道任意),使用DMA将ADC的数据搬运至buf中, T3_TRGO事件触发启动ADC。
时间: 2024-05-03 08:19:01 浏览: 76
好的,这里是一个可能的实现方案:
```c
#include "stm32f4xx.h"
#define ADC_NUM_CHANNELS 3
#define ADC_BUF_SIZE (ADC_NUM_CHANNELS * 100) // 一个通道采集100次
#define TIM_PERIOD 1000 // TIM3的周期为1ms
uint16_t adc_buf[ADC_BUF_SIZE]; // 存储ADC数据的缓冲区
uint16_t adc_index = 0; // ADC数据缓冲区的索引
void TIM3_IRQHandler(void)
{
if (TIM_GetITStatus(TIM3, TIM_IT_Update) != RESET) {
TIM_ClearITPendingBit(TIM3, TIM_IT_Update);
// 翻转IO口
GPIO_ToggleBits(GPIOD, GPIO_Pin_12);
// 启动ADC转换
ADC_SoftwareStartConv(ADC1);
}
}
void DMA2_Stream0_IRQHandler(void)
{
if (DMA_GetITStatus(DMA2_Stream0, DMA_IT_TCIF0) != RESET) {
DMA_ClearITPendingBit(DMA2_Stream0, DMA_IT_TCIF0);
// 使能DMA,继续搬运数据
DMA_Cmd(DMA2_Stream0, ENABLE);
}
}
int main(void)
{
// 初始化时钟
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOD, ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE);
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_DMA2, ENABLE);
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);
// 初始化GPIO
GPIO_InitTypeDef gpio_init;
GPIO_StructInit(&gpio_init);
gpio_init.GPIO_Pin = GPIO_Pin_12;
gpio_init.GPIO_Mode = GPIO_Mode_OUT;
GPIO_Init(GPIOD, &gpio_init);
// 初始化ADC
ADC_InitTypeDef adc_init;
ADC_StructInit(&adc_init);
adc_init.ADC_Resolution = ADC_Resolution_12b;
adc_init.ADC_ScanConvMode = ENABLE;
adc_init.ADC_ContinuousConvMode = ENABLE;
adc_init.ADC_ExternalTrigConvEdge = ADC_ExternalTrigConvEdge_Rising;
adc_init.ADC_ExternalTrigConv = ADC_ExternalTrigConv_T3_TRGO;
ADC_Init(ADC1, &adc_init);
// 配置ADC通道
ADC_RegularChannelConfig(ADC1, ADC_Channel_0, 1, ADC_SampleTime_15Cycles);
ADC_RegularChannelConfig(ADC1, ADC_Channel_1, 2, ADC_SampleTime_15Cycles);
ADC_RegularChannelConfig(ADC1, ADC_Channel_2, 3, ADC_SampleTime_15Cycles);
// 初始化DMA
DMA_InitTypeDef dma_init;
DMA_StructInit(&dma_init);
dma_init.DMA_Channel = DMA_Channel_0;
dma_init.DMA_PeripheralBaseAddr = (uint32_t)(&ADC1->DR);
dma_init.DMA_Memory0BaseAddr = (uint32_t)(adc_buf);
dma_init.DMA_DIR = DMA_DIR_PeripheralToMemory;
dma_init.DMA_BufferSize = ADC_BUF_SIZE;
dma_init.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
dma_init.DMA_MemoryInc = DMA_MemoryInc_Enable;
dma_init.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord;
dma_init.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord;
dma_init.DMA_Mode = DMA_Mode_Circular;
dma_init.DMA_Priority = DMA_Priority_High;
dma_init.DMA_FIFOMode = DMA_FIFOMode_Disable;
dma_init.DMA_MemoryBurst = DMA_MemoryBurst_Single;
dma_init.DMA_PeripheralBurst = DMA_PeripheralBurst_Single;
DMA_Init(DMA2_Stream0, &dma_init);
// 配置DMA中断
NVIC_InitTypeDef nvic_init;
nvic_init.NVIC_IRQChannel = DMA2_Stream0_IRQn;
nvic_init.NVIC_IRQChannelPreemptionPriority = 0;
nvic_init.NVIC_IRQChannelSubPriority = 0;
nvic_init.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&nvic_init);
// 启用DMA
DMA_Cmd(DMA2_Stream0, ENABLE);
// 初始化定时器
TIM_TimeBaseInitTypeDef tim_init;
TIM_TimeBaseStructInit(&tim_init);
tim_init.TIM_Period = TIM_PERIOD - 1;
tim_init.TIM_Prescaler = SystemCoreClock / 1000000 - 1;
tim_init.TIM_ClockDivision = TIM_CKD_DIV1;
tim_init.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseInit(TIM3, &tim_init);
// 配置定时器中断
nvic_init.NVIC_IRQChannel = TIM3_IRQn;
NVIC_Init(&nvic_init);
TIM_ITConfig(TIM3, TIM_IT_Update, ENABLE);
// 启动定时器
TIM_Cmd(TIM3, ENABLE);
while (1) {
// 等待数据被DMA搬运
while (DMA_GetFlagStatus(DMA2_Stream0, DMA_FLAG_TCIF0) == RESET);
// 处理ADC数据
for (int i = 0; i < ADC_BUF_SIZE; i += ADC_NUM_CHANNELS) {
printf("%d, %d, %d\n", adc_buf[i], adc_buf[i + 1], adc_buf[i + 2]);
}
// 清除DMA标志
DMA_ClearFlag(DMA2_Stream0, DMA_FLAG_TCIF0);
}
}
```
在这个实现方案中,我们使用定时器TIM3的更新中断来触发ADC转换。每当TIM3更新时,我们先翻转一个IO口以便于测量1ms的时间,然后启动ADC转换。ADC转换完成后,我们通过DMA将数据搬运至adc_buf缓冲区中。由于我们使用了循环模式的DMA,因此DMA会一直搬运数据,直到我们手动停止它。我们可以在DMA中断中重新使能DMA,以便于继续搬运数据。最后,在主循环中,我们等待DMA搬运完成,并处理ADC数据。
阅读全文