self.alpha_optimizer.apply_gradients(zip(alpha_gradient, [self.log_alpha]))

时间: 2024-02-11 09:08:28 浏览: 27
这个报错可能是因为您在定义 `SAC` 类时没有正确地初始化 `alpha_optimizer`。在一些版本的 `SAC` 算法中,`alpha_optimizer` 是算法的一个优化器对象,用于更新 `log_alpha`。如果您的 `SAC` 版本中包含 `alpha_optimizer`,则必须在初始化算法时将其设置为一个优化器对象,例如: ``` alpha_optimizer = tf.keras.optimizers.Adam(learning_rate=0.001) sac = SAC(alpha_optimizer=alpha_optimizer, ...) ``` 在上面的代码中,我们使用 `tf.keras.optimizers.Adam` 定义了一个名为 `alpha_optimizer` 的优化器对象,并将其传给了 `SAC` 类。这样,在算法运行过程中,就可以使用 `alpha_optimizer` 对 `log_alpha` 进行更新了。 如果您的 `SAC` 版本中不包含 `alpha_optimizer`,那么可能是其他地方出现了问题。您可以检查代码中是否有其他地方对 `alpha_optimizer` 进行了重新定义,或者检查算法的实现是否正确。如果您确认 `alpha_optimizer` 已经正确地初始化了,那么可能是其他地方出现了问题,您可以进一步检查代码并调试。
相关问题

以Tensorflow为框架编写带有更新温度系数alpha的SAC算法

好的,以下是基于Tensorflow框架编写带有更新温度系数alpha的SAC算法的代码示例: ```python import tensorflow as tf import numpy as np class SAC: def __init__(self, state_dim, action_dim, alpha_init=0.1, alpha_lr=1e-3, alpha_target=0.2): self.state_dim = state_dim self.action_dim = action_dim self.alpha_init = alpha_init self.alpha_lr = alpha_lr self.alpha_target = alpha_target self.alpha = tf.Variable(self.alpha_init, dtype=tf.float32, name='alpha') self.policy = self._build_policy_net() self.q1_net, self.q2_net = self._build_q_nets() self.target_q1_net, self.target_q2_net = self._build_q_nets() self.q1_optimizer = tf.optimizers.Adam(learning_rate=1e-3) self.q2_optimizer = tf.optimizers.Adam(learning_rate=1e-3) self.policy_optimizer = tf.optimizers.Adam(learning_rate=1e-3) self.update_target_q1_net = self._get_target_net_update_op(self.q1_net, self.target_q1_net) self.update_target_q2_net = self._get_target_net_update_op(self.q2_net, self.target_q2_net) def _build_policy_net(self): input_layer = tf.keras.layers.Input(shape=(self.state_dim,)) hidden_layer_1 = tf.keras.layers.Dense(256, activation='relu')(input_layer) hidden_layer_2 = tf.keras.layers.Dense(256, activation='relu')(hidden_layer_1) output_layer = tf.keras.layers.Dense(self.action_dim, activation='tanh')(hidden_layer_2) mean = tf.keras.layers.Lambda(lambda x: x * 2)(output_layer) log_std = tf.Variable(-0.5 * np.ones(self.action_dim, dtype=np.float32), name='log_std') std = tf.exp(log_std) dist = tfp.distributions.Normal(mean, std) action = dist.sample() policy = tf.keras.models.Model(inputs=input_layer, outputs=[action, mean, std]) return policy def _build_q_nets(self): state_input = tf.keras.layers.Input(shape=(self.state_dim,)) action_input = tf.keras.layers.Input(shape=(self.action_dim,)) concat_layer = tf.keras.layers.Concatenate()([state_input, action_input]) hidden_layer_1 = tf.keras.layers.Dense(256, activation='relu')(concat_layer) hidden_layer_2 = tf.keras.layers.Dense(256, activation='relu')(hidden_layer_1) q_output = tf.keras.layers.Dense(1)(hidden_layer_2) q_net = tf.keras.models.Model(inputs=[state_input, action_input], outputs=q_output) return q_net, q_net def _get_target_net_update_op(self, net, target_net, tau=0.005): target_weights = target_net.get_weights() weights = net.get_weights() update_target_weights = [target_weights[i] * (1 - tau) + weights[i] * tau for i in range(len(weights))] return tf.group([target_net.weights[i].assign(update_target_weights[i]) for i in range(len(target_weights))]) def get_action(self, state): action, mean, std = self.policy(state) return action.numpy()[0], mean.numpy()[0], std.numpy()[0] def update(self, memory, batch_size=100, gamma=0.99, tau=0.005, alpha_target_entropy=-np.prod(self.action_dim)): state, action, reward, next_state, done = memory.sample(batch_size) with tf.GradientTape(persistent=True) as tape: # Compute Q-values q1 = self.q1_net([state, action]) q2 = self.q2_net([state, action]) # Compute target Q-values target_action, target_mean, target_std = self.policy(next_state) target_dist = tfp.distributions.Normal(target_mean, target_std) target_entropy = -target_dist.entropy() target_q1 = self.target_q1_net([next_state, target_action]) target_q2 = self.target_q2_net([next_state, target_action]) target_q = tf.minimum(target_q1, target_q2) - self.alpha * target_entropy target_q = tf.stop_gradient(target_q) td_error_1 = tf.abs(q1 - (reward + gamma * target_q * (1 - done))) td_error_2 = tf.abs(q2 - (reward + gamma * target_q * (1 - done))) # Compute losses and gradients q1_loss = tf.reduce_mean(td_error_1) q2_loss = tf.reduce_mean(td_error_2) q1_grads = tape.gradient(q1_loss, self.q1_net.trainable_variables) q2_grads = tape.gradient(q2_loss, self.q2_net.trainable_variables) # Update Q-networks self.q1_optimizer.apply_gradients(zip(q1_grads, self.q1_net.trainable_variables)) self.q2_optimizer.apply_gradients(zip(q2_grads, self.q2_net.trainable_variables)) # Compute policy loss and gradients action, mean, std = self.policy(state) dist = tfp.distributions.Normal(mean, std) entropy = dist.entropy() q1 = self.q1_net([state, action]) q2 = self.q2_net([state, action]) q = tf.minimum(q1, q2) policy_loss = tf.reduce_mean(self.alpha * entropy - q) policy_grads = tape.gradient(policy_loss, self.policy.trainable_variables) self.policy_optimizer.apply_gradients(zip(policy_grads, self.policy.trainable_variables)) # Update target networks self.update_target_q1_net self.update_target_q2_net # Update alpha alpha_loss = -tf.reduce_mean(self.alpha * (entropy + alpha_target_entropy)) alpha_grads = tape.gradient(alpha_loss, [self.alpha]) self.alpha_optimizer.apply_gradients(zip(alpha_grads, [self.alpha])) # Update temperature coefficient alpha self.alpha = tf.clip_by_value(self.alpha + self.alpha_lr * (self.alpha_target - tf.exp(self.log_alpha)), 1e-4, 1e2) ``` 在这个SAC算法的实现中,我们引入了一个温度系数alpha,其初始值为alpha_init,目标值为alpha_target。在每次更新中,我们会计算出当前策略分布和目标分布的交叉熵,并将其乘以alpha,得到一个entropy term,用来调整策略的探索程度。我们同时也会计算出一个alpha_loss,用来更新温度系数alpha。 需要注意的是,在更新温度系数alpha时,我们对其进行了一个clip操作,将其限制在了一个较小的范围内,以防止alpha的值过大或过小导致算法失效。

soft actor critic tensorflow1.x code

以下是一个使用TensorFlow 1.x实现Soft Actor-Critic(SAC)算法的代码示例: ```python import tensorflow as tf import numpy as np import gym # Hyperparameters gamma = 0.99 tau = 0.005 hidden_sizes = [256, 256] batch_size = 100 buffer_size = 10000 learning_rate = 0.0003 alpha = 0.2 target_entropy = -1.0 # Create the replay buffer class ReplayBuffer: def __init__(self, obs_dim, act_dim, size): self.obs_buf = np.zeros((size, obs_dim), dtype=np.float32) self.act_buf = np.zeros((size, act_dim), dtype=np.float32) self.rew_buf = np.zeros(size, dtype=np.float32) self.next_obs_buf = np.zeros((size, obs_dim), dtype=np.float32) self.done_buf = np.zeros(size, dtype=np.float32) self.ptr, self.size, self.max_size = 0, 0, size def store(self, obs, act, rew, next_obs, done): self.obs_buf[self.ptr] = obs self.act_buf[self.ptr] = act self.rew_buf[self.ptr] = rew self.next_obs_buf[self.ptr] = next_obs self.done_buf[self.ptr] = done self.ptr = (self.ptr+1) % self.max_size self.size = min(self.size+1, self.max_size) def sample_batch(self, batch_size=batch_size): idxs = np.random.randint(0, self.size, size=batch_size) return dict(obs=self.obs_buf[idxs], act=self.act_buf[idxs], rew=self.rew_buf[idxs], next_obs=self.next_obs_buf[idxs], done=self.done_buf[idxs]) # Create the actor and critic networks class MLP(tf.keras.Model): def __init__(self, sizes, activation=tf.nn.relu, output_activation=None): super(MLP, self).__init__() self.layers_ = [] for i, size in enumerate(sizes[:-1]): layer = tf.keras.layers.Dense(units=size, activation=activation) self.layers_.append(layer) self.layers_.append(tf.keras.layers.Dense(units=sizes[-1], activation=output_activation)) def call(self, inputs): x = inputs for layer in self.layers_: x = layer(x) return x class ActorCritic(tf.keras.Model): def __init__(self, obs_dim, act_dim, hidden_sizes, activation=tf.nn.relu, output_activation=None): super(ActorCritic, self).__init__() self.q1 = MLP(hidden_sizes + [1], activation, output_activation) self.q2 = MLP(hidden_sizes + [1], activation, output_activation) self.v = MLP(hidden_sizes + [1], activation, output_activation) self.pi = MLP(hidden_sizes + [act_dim], activation, tf.nn.tanh) def call(self, obs, act=None): q1 = self.q1(tf.concat([obs, act], axis=-1)) q2 = self.q2(tf.concat([obs, act], axis=-1)) v = self.v(obs) pi = self.pi(obs) return q1, q2, v, pi def act(self, obs): pi = self.pi(obs) return pi.numpy() # Create the SAC agent class SAC: def __init__(self, obs_dim, act_dim, hidden_sizes, buffer_size, batch_size, learning_rate, alpha, gamma, tau, target_entropy): self.q_optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate) self.v_optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate) self.pi_optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate) self.replay_buffer = ReplayBuffer(obs_dim=obs_dim, act_dim=act_dim, size=buffer_size) self.batch_size = batch_size self.alpha = alpha self.gamma = gamma self.tau = tau self.target_entropy = target_entropy self.obs_dim = obs_dim self.act_dim = act_dim self.hidden_sizes = hidden_sizes self.actor_critic = ActorCritic(obs_dim, act_dim, hidden_sizes) def update(self, data): obs = data['obs'] act = data['act'] rew = data['rew'] next_obs = data['next_obs'] done = data['done'] with tf.GradientTape(persistent=True) as tape: q1, q2, v, pi = self.actor_critic(obs, act) _, _, _, next_pi = self.actor_critic(next_obs) v_target = self.target_v(next_obs, next_pi) q_target = rew + self.gamma * (1 - done) * v_target q1_loss = tf.reduce_mean(tf.square(q1 - q_target)) q2_loss = tf.reduce_mean(tf.square(q2 - q_target)) v_loss = tf.reduce_mean(tf.square(v - v_target)) pi_loss = tf.reduce_mean(self.alpha * pi.log_prob(act) - q1) alpha_loss = tf.reduce_mean(-self.alpha * (self.target_entropy - pi.entropy())) q1_grads = tape.gradient(q1_loss, self.actor_critic.q1.trainable_variables) self.q_optimizer.apply_gradients(zip(q1_grads, self.actor_critic.q1.trainable_variables)) q2_grads = tape.gradient(q2_loss, self.actor_critic.q2.trainable_variables) self.q_optimizer.apply_gradients(zip(q2_grads, self.actor_critic.q2.trainable_variables)) v_grads = tape.gradient(v_loss, self.actor_critic.v.trainable_variables) self.v_optimizer.apply_gradients(zip(v_grads, self.actor_critic.v.trainable_variables)) pi_grads = tape.gradient(pi_loss, self.actor_critic.pi.trainable_variables) self.pi_optimizer.apply_gradients(zip(pi_grads, self.actor_critic.pi.trainable_variables)) alpha_grads = tape.gradient(alpha_loss, [self.alpha]) self.alpha = tf.clip_by_value(self.alpha - learning_rate * alpha_grads[0], 0, 1) del tape def target_v(self, obs, pi): q1, q2, _, _ = self.actor_critic(obs, pi) q = tf.minimum(q1, q2) v_target = tf.reduce_mean(q - self.alpha * pi.entropy()) return v_target def train(self): data = self.replay_buffer.sample_batch(self.batch_size) self.update(data) def store(self, obs, act, rew, next_obs, done): self.replay_buffer.store(obs, act, rew, next_obs, done) def act(self, obs): return self.actor_critic.act(obs) def save(self, save_path): self.actor_critic.save_weights(save_path) def load(self, load_path): self.actor_critic.load_weights(load_path) # Train the SAC agent on the gym environment env = gym.make('Pendulum-v0') obs_dim = env.observation_space.shape[0] act_dim = env.action_space.shape[0] sac = SAC(obs_dim, act_dim, hidden_sizes, buffer_size, batch_size, learning_rate, alpha, gamma, tau, target_entropy) for i in range(1000): obs = env.reset() total_reward = 0 done = False while not done: act = sac.act(obs.reshape(1, -1)) next_obs, rew, done, _ = env.step(act[0]) sac.store(obs, act, rew, next_obs, done) sac.train() obs = next_obs total_reward += rew print('Epoch: {}, Total Reward: {:.2f}'.format(i, total_reward)) sac.save('sac_model') ``` 请注意,这只是一个基本的实现示例,其中有许多可以进行改进和优化的方面。

相关推荐

最新推荐

recommend-type

毕业设计MATLAB_执行一维相同大小矩阵的QR分解.zip

毕业设计matlab
recommend-type

ipython-7.9.0.tar.gz

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

debugpy-1.0.0b3-cp37-cp37m-manylinux2010_x86_64.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

libaacs-devel-0.10.0-1.mga8.i586.rpm

rpm -i xx.rpm 只要报错遇到aacs的可以看看架构是否一致
recommend-type

几个ACM算法pdf.zip

[ACM国际大学生程序设计竞赛题解].pdf ACM模板-清华大学.pdf ACM算法模板(吉林大学).pdf
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

用Spring boot和vue写一个登录注册界面

好的,这是一个比较常见的技术问题,我可以为您提供一些参考资料和思路。首先,您可以使用Spring Boot作为后端框架来处理用户认证和注册的逻辑,比如使用Spring Security实现用户登录认证。同时,您还需要设计相应的数据模型和数据库表结构来存储用户信息。在前端方面,您可以使用Vue.js作为框架来构建登录注册页面,使用Axios来发起API请求并和后端进行交互。当然,在实现过程中,还需要考虑一些具体细节,比如数据校验、安全性和用户体验等方面。希望这些信息能够帮助到您。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。