models.resnet18前向过程修改
时间: 2023-08-04 16:08:40 浏览: 94
采用resnet50进行手势识别的分类(注意:不是检测,使用pytorch)
ResNet18是一个非常流行的深度学习模型,它的结构是由多个残差块组成的。在每个残差块内部,包含了多个卷积层和标准化层,以及一个跳跃连接(skip connection)。
在PyTorch中,可以通过修改ResNet18的forward方法来实现定制化的前向过程。下面是一个修改ResNet18前向过程的示例代码:
```python
import torch.nn as nn
import torch.utils.model_zoo as model_zoo
# 定义ResNet18模型
model_urls = {
'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
}
class ResNet18(nn.Module):
def __init__(self, num_classes=1000):
super(ResNet18, self).__init__()
self.inplanes = 64
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = nn.Sequential(
nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
)
self.layer2 = nn.Sequential(
nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1, bias=False),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
)
self.layer3 = nn.Sequential(
nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1, bias=False),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
)
self.layer4 = nn.Sequential(
nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1, bias=False),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x) # 修改层1的前向过程
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
```
在上面的代码中,我们通过修改ResNet18的forward方法来实现了对第一层的定制化。具体来说,我们将原来的layer1替换为了一个新的Sequential对象,其中包含了两个卷积层和标准化层,并且在两个卷积层之间插入了一个ReLU激活函数。
这样做的好处是可以更加灵活地定制ResNet18模型的前向过程,以适应不同的任务需求。
阅读全文