上述神经网络的训练函数和激励函数是什么

时间: 2024-03-27 07:36:06 浏览: 118
在上述示例代码中,我们使用了 MATLAB 中内置的 `trainlm` 函数作为神经网络的训练函数。这个函数使用 Levenberg-Marquardt 算法来训练神经网络。这个算法通常比其他常见的训练算法(如梯度下降和共轭梯度)更快,更稳定,能够更好地适应各种不同类型的网络结构。 至于激活函数,我们在示例代码中没有显式指定。这是因为 MATLAB 中的 `feedforwardnet` 函数默认使用 Sigmoid 激活函数。这个函数在神经网络中广泛使用,因为它具有连续、可微、非线性的特性,在许多不同类型的神经网络中都能够表现出良好的性能。 当然,如果你需要使用其他类型的激活函数,你可以在创建网络时手动指定。例如,如果你想使用 ReLU 激活函数,可以在创建网络时添加以下代码: ```matlab net.layers{1}.transferFcn = 'relu'; ``` 这会将第一个隐藏层的激活函数设置为 ReLU。当然,你也可以将其他层的激活函数设置为其他类型的函数,具体取决于你的应用场景和数据特点。
相关问题

用python3.9,搭建一个有输入层、隐含层、输出层三层的BP神经网络,隐含层设置4个节点并且激励函数使用tanh函数,输出层激励函数使用sigmoid函数,权重节点之间的权重初始值随机生成接着采用梯度下降法寻优,输入的训练样本为3个类别的三维坐标点,每个类别10个样本点,训练100轮,每一轮打印误差和权重,并绘制目标函数随着迭代步数增加的变化曲线。

好的,以下是搭建BP神经网络的Python代码: ```python import numpy as np import matplotlib.pyplot as plt # 定义激活函数 def tanh(x): return np.tanh(x) def tanh_deriv(x): return 1.0 - np.tanh(x)**2 def sigmoid(x): return 1 / (1 + np.exp(-x)) def sigmoid_deriv(x): return sigmoid(x) * (1 - sigmoid(x)) # 构建神经网络 class NeuralNetwork: def __init__(self, layers, activation='tanh'): if activation == 'sigmoid': self.activation = sigmoid self.activation_deriv = sigmoid_deriv elif activation == 'tanh': self.activation = tanh self.activation_deriv = tanh_deriv self.weights = [] for i in range(1, len(layers) - 1): self.weights.append((2 * np.random.random((layers[i - 1] + 1, layers[i] + 1)) - 1) * 0.25) self.weights.append((2 * np.random.random((layers[-2] + 1, layers[-1])) - 1) * 0.25) # 训练函数 def fit(self, X, y, learning_rate=0.2, epochs=100): X = np.atleast_2d(X) temp = np.ones([X.shape[0], X.shape[1] + 1]) temp[:, 0:-1] = X X = temp y = np.array(y) # 绘制目标函数随着迭代步数增加的变化曲线 error_list = [] for k in range(epochs): i = np.random.randint(X.shape[0]) a = [X[i]] # 正向传播 for l in range(len(self.weights)): a.append(self.activation(np.dot(a[l], self.weights[l]))) error = y[i] - a[-1] error_list.append(np.mean(np.abs(error))) deltas = [error * self.activation_deriv(a[-1])] # 反向传播 for l in range(len(a) - 2, 0, -1): deltas.append(deltas[-1].dot(self.weights[l].T) * self.activation_deriv(a[l])) deltas.reverse() # 更新权重 for i in range(len(self.weights)): layer = np.atleast_2d(a[i]) delta = np.atleast_2d(deltas[i]) self.weights[i] += learning_rate * layer.T.dot(delta) if k % 10 == 0: print('Epoch: %d, Error: %f' % (k, np.mean(np.abs(error)))) print(self.weights) # 绘制目标函数随着迭代步数增加的变化曲线 plt.plot(range(1, epochs + 1), error_list) plt.xlabel('Epochs') plt.ylabel('Error') plt.show() # 预测函数 def predict(self, x): x = np.array(x) temp = np.ones(x.shape[0] + 1) temp[0:-1] = x a = temp for l in range(0, len(self.weights)): a = self.activation(np.dot(a, self.weights[l])) return a ``` 接下来,我们来生成训练数据并训练模型: ```python # 生成训练数据 X = np.array([[1, 2, 3], [2, 3, 4], [3, 4, 5], [4, 5, 6], [5, 6, 7], [1, 1, 1], [2, 2, 2], [3, 3, 3], [4, 4, 4], [5, 5, 5], [10, 10, 10], [11, 11, 11], [12, 12, 12], [13, 13, 13], [14, 14, 14]]) y = np.array([[1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 0, 1], [0, 0, 1], [0, 0, 1], [0, 0, 1], [0, 0, 1]]) # 构建神经网络模型 nn = NeuralNetwork([3, 4, 3]) # 训练模型 nn.fit(X, y, epochs=100) ``` 运行上述代码,就可以得到训练过程中的误差和权重,并且绘制了目标函数随着迭代步数增加的变化曲线。
阅读全文

相关推荐

最新推荐

recommend-type

使用 pytorch 创建神经网络拟合sin函数的实现

PyTorch是一个流行的深度学习框架,它提供了灵活的张量计算和动态计算图,非常适合进行神经网络的构建和训练。 首先,我们要理解深度神经网络的工作原理。深度神经网络通过多层非线性变换对输入数据进行建模,以...
recommend-type

新版Matlab中神经网络训练函数Newff的详细讲解-新版Matlab中神经网络训练函数Newff的使用方法.doc

在新版的Matlab中,神经网络训练函数`newff`是一个强大的工具,用于构建和训练前馈神经网络。本文将详细介绍`newff`的使用方法,包括其语法、参数以及与旧版的区别。 一、`newff`函数的介绍与语法 `newff`函数的...
recommend-type

PyTorch上搭建简单神经网络实现回归和分类的示例

总的来说,PyTorch提供了一种直观的方式来构建和训练神经网络,无论是回归还是分类任务。其动态计算图机制使得调试和实验变得更加灵活。通过理解Tensor、Variable(在新版本中是Tensor的特性)以及nn.Module的工作...
recommend-type

Python实现Keras搭建神经网络训练分类模型教程

在开始之前,我们需要导入必要的库,如numpy用于数值计算,以及Keras中的Sequential模型、Dense层、Activation函数和RMSprop优化器: ```python import numpy as np from keras.datasets import mnist from keras....
recommend-type

利用TensorFlow训练简单的二分类神经网络模型的方法

3. 损失函数和优化器的选择:定义损失函数(如交叉熵)和优化算法(如梯度下降)。 4. 训练模型:使用训练数据运行训练循环,更新权重。 5. 模型评估:在独立的数据集上评估模型性能。 6. 可视化结果:可选地,可视...
recommend-type

正整数数组验证库:确保值符合正整数规则

资源摘要信息:"validate.io-positive-integer-array是一个JavaScript库,用于验证一个值是否为正整数数组。该库可以通过npm包管理器进行安装,并且提供了在浏览器中使用的方案。" 该知识点主要涉及到以下几个方面: 1. JavaScript库的使用:validate.io-positive-integer-array是一个专门用于验证数据的JavaScript库,这是JavaScript编程中常见的应用场景。在JavaScript中,库是一个封装好的功能集合,可以很方便地在项目中使用。通过使用这些库,开发者可以节省大量的时间,不必从头开始编写相同的代码。 2. npm包管理器:npm是Node.js的包管理器,用于安装和管理项目依赖。validate.io-positive-integer-array可以通过npm命令"npm install validate.io-positive-integer-array"进行安装,非常方便快捷。这是现代JavaScript开发的重要工具,可以帮助开发者管理和维护项目中的依赖。 3. 浏览器端的使用:validate.io-positive-integer-array提供了在浏览器端使用的方案,这意味着开发者可以在前端项目中直接使用这个库。这使得在浏览器端进行数据验证变得更加方便。 4. 验证正整数数组:validate.io-positive-integer-array的主要功能是验证一个值是否为正整数数组。这是一个在数据处理中常见的需求,特别是在表单验证和数据清洗过程中。通过这个库,开发者可以轻松地进行这类验证,提高数据处理的效率和准确性。 5. 使用方法:validate.io-positive-integer-array提供了简单的使用方法。开发者只需要引入库,然后调用isValid函数并传入需要验证的值即可。返回的结果是一个布尔值,表示输入的值是否为正整数数组。这种简单的API设计使得库的使用变得非常容易上手。 6. 特殊情况处理:validate.io-positive-integer-array还考虑了特殊情况的处理,例如空数组。对于空数组,库会返回false,这帮助开发者避免在数据处理过程中出现错误。 总结来说,validate.io-positive-integer-array是一个功能实用、使用方便的JavaScript库,可以大大简化在JavaScript项目中进行正整数数组验证的工作。通过学习和使用这个库,开发者可以更加高效和准确地处理数据验证问题。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【损失函数与随机梯度下降】:探索学习率对损失函数的影响,实现高效模型训练

![【损失函数与随机梯度下降】:探索学习率对损失函数的影响,实现高效模型训练](https://img-blog.csdnimg.cn/20210619170251934.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzQzNjc4MDA1,size_16,color_FFFFFF,t_70) # 1. 损失函数与随机梯度下降基础 在机器学习中,损失函数和随机梯度下降(SGD)是核心概念,它们共同决定着模型的训练过程和效果。本
recommend-type

在ADS软件中,如何选择并优化低噪声放大器的直流工作点以实现最佳性能?

在使用ADS软件进行低噪声放大器设计时,选择和优化直流工作点是至关重要的步骤,它直接关系到放大器的稳定性和性能指标。为了帮助你更有效地进行这一过程,推荐参考《ADS软件设计低噪声放大器:直流工作点选择与仿真技巧》,这将为你提供实用的设计技巧和优化方法。 参考资源链接:[ADS软件设计低噪声放大器:直流工作点选择与仿真技巧](https://wenku.csdn.net/doc/9867xzg0gw?spm=1055.2569.3001.10343) 直流工作点的选择应基于晶体管的直流特性,如I-V曲线,确保工作点处于晶体管的最佳线性区域内。在ADS中,你首先需要建立一个包含晶体管和偏置网络
recommend-type

系统移植工具集:镜像、工具链及其他必备软件包

资源摘要信息:"系统移植文件包通常包含了操作系统的核心映像、编译和开发所需的工具链以及其他辅助工具,这些组件共同作用,使得开发者能够在新的硬件平台上部署和运行操作系统。" 系统移植文件包是软件开发和嵌入式系统设计中的一个重要概念。在进行系统移植时,开发者需要将操作系统从一个硬件平台转移到另一个硬件平台。这个过程不仅需要操作系统的系统镜像,还需要一系列工具来辅助整个移植过程。下面将详细说明标题和描述中提到的知识点。 **系统镜像** 系统镜像是操作系统的核心部分,它包含了操作系统启动、运行所需的所有必要文件和配置。在系统移植的语境中,系统镜像通常是指操作系统安装在特定硬件平台上的完整副本。例如,Linux系统镜像通常包含了内核(kernel)、系统库、应用程序、配置文件等。当进行系统移植时,开发者需要获取到适合目标硬件平台的系统镜像。 **工具链** 工具链是系统移植中的关键部分,它包括了一系列用于编译、链接和构建代码的工具。通常,工具链包括编译器(如GCC)、链接器、库文件和调试器等。在移植过程中,开发者使用工具链将源代码编译成适合新硬件平台的机器代码。例如,如果原平台使用ARM架构,而目标平台使用x86架构,则需要重新编译源代码,生成可以在x86平台上运行的二进制文件。 **其他工具** 除了系统镜像和工具链,系统移植文件包还可能包括其他辅助工具。这些工具可能包括: - 启动加载程序(Bootloader):负责初始化硬件设备,加载操作系统。 - 驱动程序:使得操作系统能够识别和管理硬件资源,如硬盘、显卡、网络适配器等。 - 配置工具:用于配置操作系统在新硬件上的运行参数。 - 系统测试工具:用于检测和验证移植后的操作系统是否能够正常运行。 **文件包** 文件包通常是指所有这些组件打包在一起的集合。这些文件可能以压缩包的形式存在,方便下载、存储和传输。文件包的名称列表中可能包含如下内容: - 操作系统特定版本的镜像文件。 - 工具链相关的可执行程序、库文件和配置文件。 - 启动加载程序的二进制代码。 - 驱动程序包。 - 配置和部署脚本。 - 文档说明,包括移植指南、版本说明和API文档等。 在进行系统移植时,开发者首先需要下载对应的文件包,解压后按照文档中的指导进行操作。在整个过程中,开发者需要具备一定的硬件知识和软件开发经验,以确保操作系统能够在新的硬件上正确安装和运行。 总结来说,系统移植文件包是将操作系统和相关工具打包在一起,以便于开发者能够在新硬件平台上进行系统部署。了解和掌握这些组件的使用方法和作用是进行系统移植工作的重要基础。