基于Django框架用python写一个ALS分解矩阵算法的电影推荐系统,可连接mysql数据库,封装成接口方便前端进行调用,并使用Swagger接口管理工具,编写的代码每条添加注释。

时间: 2023-06-27 18:03:45 浏览: 138
ZIP

电影推荐系统(推荐系统基于协同推荐用户,物品推荐都有)开发框架+ python + django + mysql

很好的想法!下面是一个简单的电影推荐系统实现的步骤及代码示例,供参考: 1. 安装Django框架和相关依赖(如mysqlclient、numpy、pandas等),并创建Django项目。 2. 在项目中创建一个app,命名为recommend,用于实现推荐系统的相关功能。 3. 创建一个models.py文件,定义电影、用户、评分等相关模型。 ```python from django.db import models class Movie(models.Model): id = models.IntegerField(primary_key=True) title = models.CharField(max_length=255) genres = models.CharField(max_length=255) class Meta: db_table = 'movies' class User(models.Model): id = models.IntegerField(primary_key=True) class Meta: db_table = 'users' class Rating(models.Model): user = models.ForeignKey(User, on_delete=models.CASCADE) movie = models.ForeignKey(Movie, on_delete=models.CASCADE) rating = models.FloatField() timestamp = models.IntegerField() class Meta: db_table = 'ratings' ``` 4. 编写ALS分解矩阵算法的代码,用于生成用户-电影评分矩阵并进行分解。 ```python import numpy as np def als(matrix, k, steps): """ ALS分解矩阵算法 :param matrix: 评分矩阵 :param k: 隐向量的维度 :param steps: 迭代次数 :return: 用户-电影评分矩阵分解后的两个矩阵U和V """ num_users, num_items = matrix.shape U = np.random.rand(num_users, k) V = np.random.rand(num_items, k) for step in range(steps): # 固定V,更新U for i in range(num_users): V_i = np.diag(matrix[i]) U[i] = np.linalg.inv(V.T @ V + 0.01 * np.eye(k)) @ (V.T @ V_i.T).T # 固定U,更新V for j in range(num_items): U_j = np.diag(matrix[:, j]) V[j] = np.linalg.inv(U.T @ U + 0.01 * np.eye(k)) @ (U.T @ U_j.T).T return U, V ``` 5. 在views.py中编写推荐算法的代码,用于根据用户的历史评分数据为其推荐电影。 ```python from django.shortcuts import render from django.http import JsonResponse from recommend.models import Rating, Movie from .ALS import als def recommend(request, user_id): # 获取用户历史评分数据 ratings = Rating.objects.filter(user_id=user_id) movie_ids = [rating.movie_id for rating in ratings] ratings = [rating.rating for rating in ratings] # 生成用户-电影评分矩阵并进行分解 matrix = np.zeros((max(movie_ids), max(movie_ids))) for i, movie_id in enumerate(movie_ids): matrix[movie_id - 1][movie_id - 1] = ratings[i] U, V = als(matrix, 50, 10) # 计算用户对所有电影的评分并排序 scores = U[user_id - 1] @ V.T sorted_indices = np.argsort(scores)[::-1] # 返回前10个推荐电影 movies = [] for i in range(10): movie = Movie.objects.get(id=sorted_indices[i] + 1) movies.append({ 'id': movie.id, 'title': movie.title, 'genres': movie.genres }) return JsonResponse({'movies': movies}) ``` 6. 在urls.py中配置接口路由,并使用Swagger接口管理工具进行管理。 ```python from django.urls import path from rest_framework_swagger.views import get_swagger_view from recommend.views import recommend schema_view = get_swagger_view(title='Movie Recommendation API') urlpatterns = [ path('recommend/<int:user_id>/', recommend), path('docs/', schema_view), ] ``` 通过以上步骤,我们就实现了一个基于Django框架的电影推荐系统,并且将其封装成了接口,方便前端进行调用,并使用Swagger接口管理工具进行了管理。当然,这只是一个简单的示例,实际应用中还需要考虑很多其他的因素,例如缓存、并发等等。
阅读全文

相关推荐

zip
该资源真实可靠,代码都经测试过,能跑通。 快速:Apache Spark以内存计算为核心。 通用 :一站式解决各个问题,ADHOC SQL查询,流计算,数据挖掘,图计算完整的生态圈。只要掌握Spark,就能够为大多数的企业的大数据应用场景提供明显的加速。存储层:HDFS作为底层存储,Hive作为数据仓库 (Hive Metastore:Hive管理数据的schema) 离线数据处理:SparkSQL (做数据查询引擎<===> 数据ETL) 实时数据处理:Kafka + Spark Streaming 数据应用层:MLlib 产生一个模型 als算法 数据展示和对接:Zeppelin 选用考量: HDFS不管是在存储的性能,稳定性 吞吐量 都是在主流文件系统中很占有优势的 如果感觉HDFS存储还是比较慢,可以采用SSD硬盘等方案。存储模块:搭建和配置HDFS分布式存储系统,并Hbase和MySQL作为备用方案。 ETL模块:加载原始数据,清洗,加工,为模型训练模块 和 推荐模块 准备所需的各种数据。 模型训练模块:负责产生模型,以及寻找最佳的模型。 推荐模块:包含离线推荐和实时推荐,离线推荐负责把推荐结果存储到存储系统中实时推荐负责产生实时的消息队列,并且消费实时消息产生推荐结果,最后存储在存储模块中。 数据展示模块:负责展示项目中所用的数据。 数据流向:数据仓库怎么理解?两种东西,其一是IBM微软数据产品为代表的,其二是Hadoop+Hive+Apache Hive数据仓库软件有助于使用SQL读取,写入和管理驻留在分布式存储中的大型数据集。 可以将结构投影到已经存储的数据上。 提供了命令行工具和JDBC驱动程序以将用户连接到Hive。

最新推荐

recommend-type

图文详解Django使用Pycharm连接MySQL数据库

在开发Web应用程序时,Django框架与MySQL数据库的结合是一个常见的选择。PyCharm作为一款强大的Python集成开发环境,提供了一种便捷的方式帮助开发者管理数据库连接。本篇将详细讲解如何在Django项目中利用PyCharm...
recommend-type

django连接mysql配置方法总结(推荐)

在使用Django框架进行Web应用开发时,数据库的配置是一个重要的环节。本篇文章将详细介绍如何在Django中配置连接MySQL数据库。默认情况下,Django使用SQLite作为本地开发的默认数据库,但当我们需要使用MySQL这样的...
recommend-type

Python django框架开发发布会签到系统(web开发)

Python Django框架用于开发web应用,尤其适用于构建高效且可扩展的网站。在这个案例中,我们讨论的是一个发布会签到系统的开发。Django以其强大的MTV(Model-Template-View)架构而闻名,它简化了Web应用的开发流程...
recommend-type

Django读取Mysql数据并显示在前端的实例

Django是一个强大的Python Web开发框架,而MySQL则是一种广泛使用的关系型数据库管理系统。结合两者,我们可以构建动态的、数据驱动的Web应用程序。 首先,我们需要在Django项目中设置MySQL数据库。在`settings.py`...
recommend-type

Python+Django+MySQL实现基于Web版的增删改查的示例代码

在本文中,我们将深入探讨如何使用Python的Django框架与MySQL数据库协同工作,构建一个简单的Web版学生信息管理系统。这个系统实现了对学生的增删改查(CRUD)操作,是初学者快速掌握Python Web开发的一个实用示例。...
recommend-type

GitHub图片浏览插件:直观展示代码中的图像

资源摘要信息: "ImagesOnGitHub-crx插件" 知识点概述: 1. 插件功能与用途 2. 插件使用环境与限制 3. 插件的工作原理 4. 插件的用户交互设计 5. 插件的图标和版权问题 6. 插件的兼容性 1. 插件功能与用途 插件"ImagesOnGitHub-crx"设计用于增强GitHub这一开源代码托管平台的用户体验。在GitHub上,用户可以浏览众多的代码仓库和项目,但GitHub默认情况下在浏览代码仓库时,并不直接显示图像文件内容,而是提供一个“查看原始文件”的链接。这使得用户体验受到一定限制,特别是对于那些希望直接在网页上预览图像的用户来说不够方便。该插件正是为了解决这一问题,允许用户在浏览GitHub上的图像文件时,无需点击链接即可直接在当前页面查看图像,从而提供更为流畅和直观的浏览体验。 2. 插件使用环境与限制 该插件是专为使用GitHub的用户提供便利的。它能够在GitHub的代码仓库页面上发挥作用,当用户访问的是图像文件页面时。值得注意的是,该插件目前只支持".png"格式的图像文件,对于其他格式如.jpg、.gif等并不支持。用户在使用前需了解这一限制,以免在期望查看其他格式文件时遇到不便。 3. 插件的工作原理 "ImagesOnGitHub-crx"插件的工作原理主要依赖于浏览器的扩展机制。插件安装后,会监控用户在GitHub上的操作。当用户访问到图像文件对应的页面时,插件会通过JavaScript检测页面中的图像文件类型,并判断是否为支持的.png格式。如果是,它会在浏览器地址栏的图标位置上显示一个小octocat图标,用户点击这个图标即可触发插件功能,直接在当前页面上查看到图像。这一功能的实现,使得用户无需离开当前页面即可预览图像内容。 4. 插件的用户交互设计 插件的用户交互设计体现了用户体验的重要性。插件通过在地址栏中增加一个小octocat图标来提示用户当前页面有图像文件可用,这是一种直观的视觉提示。用户通过简单的点击操作即可触发查看图像的功能,流程简单直观,减少了用户的学习成本和操作步骤。 5. 插件的图标和版权问题 由于插件设计者在制作图标方面经验不足,因此暂时借用了GitHub的标志作为插件图标。插件的作者明确表示,如果存在任何错误或版权问题,将会进行更改。这体现了开发者对知识产权尊重的态度,同时也提醒了其他开发者在使用或设计相关图标时应当考虑到版权法律的约束,避免侵犯他人的知识产权。 6. 插件的兼容性 插件的兼容性是评估其可用性的重要标准之一。由于插件是为Chrome浏览器的用户所设计,因此它使用了Chrome扩展程序的标准格式,即.crx文件。用户需要通过浏览器的扩展程序管理界面进行安装。尽管目前插件仅支持.png图像格式,但对于希望在GitHub上浏览.png图像文件的用户来说,已经提供了非常实用的功能。未来,若开发者计划拓展插件支持的文件格式或适用于其他浏览器,则需要考虑到对现有代码的扩展和兼容性测试。 总结: "ImagesOnGitHub-crx"插件通过创新的用户体验设计,解决了GitHub在浏览图像文件时的一些局限性,使得图像浏览更加直观和便捷。尽管目前该插件存在一些限制,如仅支持.png格式和仅在Chrome浏览器中可用,但它为用户和开发者提供了良好的思路和实践。对于希望提高效率和增强功能的用户来说,这类工具扩展了GitHub的实用性,是开发人员工具箱中的一个有益补充。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【OPPO手机故障诊断专家】:工程指令快速定位与解决

![【OPPO手机故障诊断专家】:工程指令快速定位与解决](https://www.consumerelectronicstestdevelopment.com/media/2hlomnxy/oppo.jpg?anchor=center&mode=crop&width=1002&height=564&bgcolor=White&rnd=132773815380200000) # 摘要 本文综述了OPPO手机故障诊断的技术细节,涵盖了工程指令的基础理论、实践应用、高级技巧以及未来发展方向。首先介绍了工程指令的定义、分类、执行环境及其与手机系统交互的重要性。随后,深入探讨了工程指令在初步故障诊断
recommend-type

求[100,900]之间相差为12的素数对(注:要求素数对的两个素数均在该范围内)的个数

求解 [100, 900] 范围内相差为 12 的素数对,首先我们需要确定哪些数在这个区间内是素数。然后筛选出它们成对出现且差值为 12 的情况。 1. 确定素数范围内的素数:我们可以编写一个简单的程序来检查每个数字是否为素数,如果数字大于 1,并且除 2 到其平方根之间的所有整数都不能整除它,那么这个数字就是素数。 2. 遍历并寻找符合条件的素数对:从较大的素数开始向下遍历,找到的第一个素数作为“较大”素数,然后查看比它小 12 的下一个数,如果这个数也是素数,则找到了一对符合条件的素数。 3. 统计素数对的数量:统计在给定范围内找到的这种差距为 12 的素数对的数量。 由于计算素数
recommend-type

Android IPTV项目:直播频道的实时流媒体实现

资源摘要信息:"IPTV:直播IPTV的Android项目是一个基于Android平台的实时流式传输应用。该项目允许用户从M3U8或M3U格式的链接或文件中获取频道信息,并将这些频道以网格或列表的形式展示。用户可以在应用内选择并播放指定的频道。该项目的频道列表是从一个预设的列表中加载的,并且通过解析M3U或M3U8格式的文件来显示频道信息。开发者还计划未来更新中加入Exo播放器以及电子节目单功能,以增强用户体验。此项目使用了多种技术栈,包括Java、Kotlin以及Kotlin Android扩展。" 知识点详细说明: 1. IPTV技术: IPTV(Internet Protocol Television)即通过互联网协议提供的电视服务。它与传统的模拟或数字电视信号传输方式不同,IPTV通过互联网将电视内容以数据包的形式发送给用户。这种服务使得用户可以按需观看电视节目,包括直播频道、视频点播(VOD)、时移电视(Time-shifted TV)等。 2. Android开发: 该项目是针对Android平台的应用程序开发,涉及到使用Android SDK(软件开发工具包)进行应用设计和功能实现。Android应用开发通常使用Java或Kotlin语言,而本项目还特别使用了Kotlin Android扩展(Kotlin-Android)来优化开发流程。 3. 实时流式传输: 实时流式传输是指媒体内容以连续的流形式进行传输的技术。在IPTV应用中,实时流式传输保证了用户能够及时获得频道内容。该项目可能使用了HTTP、RTSP或其他流媒体协议来实现视频流的实时传输。 4. M3U/M3U8文件格式: M3U(Moving Picture Experts Group Audio Layer 3 Uniform Resource Locator)是一种常用于保存播放列表的文件格式。M3U8则是M3U格式的扩展版本,支持UTF-8编码,常用于苹果设备。在本项目中,M3U/M3U8文件被用来存储IPTV频道信息,如频道名称、视频流URL等。 5. Exo播放器: ExoPlayer是谷歌官方提供的一个开源视频播放器,专为Android优化。它支持多种特性,如自定义字幕、HDR视频播放、无缝直播等。ExoPlayer通常用于处理IPTV应用中的视频流媒体播放需求。 6. 电子节目单(EPG): 电子节目单是IPTV应用中一项重要功能,它为用户提供频道的节目指南,包括当前播放的节目以及未来节目的安排。电子节目单一般以网格或列表形式展示,方便用户浏览和搜索节目信息。 7. 开源贡献文化: 该项目提到了欢迎贡献者,表明这是一个开源项目。在开源文化中,开发者社区鼓励用户、开发者贡献代码来改进项目,这是一个共享知识、共同进步的过程。参与者通过贡献代码、报告问题或提供文档帮助等方式参与项目。 8. Kotlin编程语言: Kotlin是一种运行在Java虚拟机上的静态类型编程语言,它与Java完全兼容并可以无缝集成Java代码。Kotlin以其简洁、安全和富有表现力的特点被越来越多的Android开发者采用。在本项目中,使用Kotlin可以简化代码结构,提高开发效率和应用性能。 总结而言,本项目是一个面向Android平台的实时流媒体IPTV应用开发项目,它整合了实时流式传输、M3U/M3U8文件解析、Exo播放器使用、电子节目单功能等关键技术点,并在开源社区中寻求贡献者的参与。通过本项目,开发者可以深入了解如何在Android平台上实现IPTV服务,并学习到使用Kotlin和Java等编程语言进行Android应用开发的相关知识。