jupyter notebook对字段空值进行数据清洗
时间: 2023-09-20 12:05:01 浏览: 134
在Jupyter Notebook中,可以使用pandas库对字段空值进行数据清洗。
首先,读取数据集,例如csv文件,可以使用以下代码:
```
import pandas as pd
df = pd.read_csv('filename.csv')
```
然后,可以使用isnull()函数来检测数据集中的空值,例如:
```
df.isnull()
```
这将返回一个布尔值的数据框,其中包含True和False,表示每个单元格是否为空。
接下来,可以使用fillna()函数来填充空值。例如,可以使用以下代码将所有NaN值替换为0:
```
df.fillna(0, inplace=True)
```
其中,inplace=True表示在原始数据集上进行修改。
还可以使用dropna()函数删除包含空值的行或列。例如,可以使用以下代码删除所有包含空值的行:
```
df.dropna(inplace=True)
```
这些是一些基本的数据清洗操作,还可以使用其他函数和技术进行更复杂的数据清洗。
阅读全文