map(torch.stack, zip(*batch))

时间: 2023-03-28 09:04:25 浏览: 138
这个问题涉及到 Python 编程语言中的函数调用,我可以回答这个问题。这段代码的作用是将一个批次(batch)中的多个张量(tensor)按照维度进行堆叠,返回一个新的张量。具体来说,zip(*batch) 将批次中的多个张量按照维度进行打包,然后 map(torch.stack, ...) 将每个打包后的元组中的张量进行堆叠,最终返回一个新的张量。
相关问题

import os import json import torch from PIL import Image from torchvision import transforms from model import resnet34 def main(): device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") data_transform = transforms.Compose( [transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]) # load image # 指向需要遍历预测的图像文件夹 imgs_root = "../dataset/val" assert os.path.exists(imgs_root), f"file: '{imgs_root}' dose not exist." # 读取指定文件夹下所有jpg图像路径 img_path_list = [os.path.join(imgs_root, i) for i in os.listdir(imgs_root) if i.endswith(".jpg")] # read class_indict json_path = './class_indices.json' assert os.path.exists(json_path), f"file: '{json_path}' dose not exist." json_file = open(json_path, "r") class_indict = json.load(json_file) # create model model = resnet34(num_classes=16).to(device) # load model weights weights_path = "./newresNet34.pth" assert os.path.exists(weights_path), f"file: '{weights_path}' dose not exist." model.load_state_dict(torch.load(weights_path, map_location=device)) # prediction model.eval() batch_size = 8 # 每次预测时将多少张图片打包成一个batch with torch.no_grad(): for ids in range(0, len(img_path_list) // batch_size): img_list = [] for img_path in img_path_list[ids * batch_size: (ids + 1) * batch_size]: assert os.path.exists(img_path), f"file: '{img_path}' dose not exist." img = Image.open(img_path) img = data_transform(img) img_list.append(img) # batch img # 将img_list列表中的所有图像打包成一个batch batch_img = torch.stack(img_list, dim=0) # predict class output = model(batch_img.to(device)).cpu() predict = torch.softmax(output, dim=1) probs, classes = torch.max(predict, dim=1) for idx, (pro, cla) in enumerate(zip(probs, classes)): print("image: {} class: {} prob: {:.3}".format(img_path_list[ids * batch_size + idx], class_indict[str(cla.numpy())], pro.numpy())) if __name__ == '__main__': main()

这段代码实现了导入必要的包和模块,包括操作系统、JSON、PyTorch、PIL及其转换模块、还有定义的resnet34模型。在主函数中,首先根据可用GPU情况使用cuda或cpu作为设备,然后定义数据的处理流程,包括缩放、剪裁、转换为Tensor并进行标准化。

AssertionError: train: No labels found in D:\YOLO\datasets\Armor\labels\1.cache, can not start training.

这个错误提示表明在训练YOLO模型时,找不到训练数据集中的标签文件。解决这个问题的方法如下: 1. 确认标签文件是否存在,标签文件应该与图像文件在同一目录下,且文件名相同,只是扩展名不同。标签文件的扩展名通常为.txt,每个文件应包含与其对应的图像文件中所有对象的标签信息。 2. 确认标签文件的格式是否正确。YOLO模型要求标签文件的格式为每行一个对象,每行包含对象的类别和位置信息。位置信息应该是相对于图像宽度和高度的归一化坐标,即左上角和右下角的坐标值应该在0到1之间。 3. 确认训练脚本中的数据集路径和标签文件路径是否正确。如果数据集路径或标签文件路径不正确,就会导致找不到标签文件的错误。 4. 修改datasets.py文件。在该文件中,需要将标签文件的路径替换为正确的路径。具体来说,需要将datasets.py文件中的JPEGImages替换为标签文件所在的目录。 以下是修改后的datasets.py文件的示例代码: ```python import glob import os import numpy as np import torch from PIL import Image from torch.utils.data import Dataset class LoadImagesAndLabels(Dataset): # for training/testing def __init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False, cache_images=False, single_cls=False): path = str(Path(path)) # os-agnostic assert os.path.isfile(path), f'File not found {path}' with open(path, 'r') as f: self.img_files = [x.replace('\n', '') for x in f.readlines() if os.path.isfile(x.replace('\n', ''))] assert self.img_files, f'No images found in {path}' self.label_files = [x.replace('images', 'labels').replace('.png', '.txt').replace('.jpg', '.txt') .replace('.jpeg', '.txt') for x in self.img_files] self.img_size = img_size self.batch_size = batch_size self.augment = augment self.hyp = hyp self.rect = rect self.image_weights = image_weights self.cache_images = cache_images self.single_cls = single_cls def __len__(self): return len(self.img_files) def __getitem__(self, index): img_path = self.img_files[index % len(self.img_files)].rstrip() label_path = self.label_files[index % len(self.img_files)].rstrip() # Load image img = None if self.cache_images: # option 1 - caches small/medium images img = self.imgs[index % len(self.imgs)] if img is None: # option 2 - loads large images on-the-fly img = Image.open(img_path).convert('RGB') if self.cache_images: if img.size[0] < 640 or img.size[1] < 640: # if one side is < 640 img = img.resize((640, 640)) # resize self.imgs[index % len(self.imgs)] = img # save assert img.size[0] > 9, f'Width must be >9 pixels {img_path}' assert img.size[1] > 9, f'Height must be >9 pixels {img_path}' # Load labels targets = None if os.path.isfile(label_path): with open(label_path, 'r') as f: x = np.array([x.split() for x in f.read().splitlines()], dtype=np.float32) # Normalized xywh to pixel xyxy format labels = x.copy() if x.size > 0: labels[:, 1] = x[:, 1] * img.width # xmin labels[:, 2] = x[:, 2] * img.height # ymin labels[:, 3] = x[:, 3] * img.width # xmax labels[:, 4] = x[:, 4] * img.height # ymax labels[:, 1:5] = xywh2xyxy(labels[:, 1:5]) # xywh to xyxy targets = torch.zeros((len(labels), 6)) targets[:, 1:] = torch.from_numpy(labels) # Apply augmentations if self.augment: img, targets = random_affine(img, targets, degrees=self.hyp['degrees'], translate=self.hyp['translate'], scale=self.hyp['scale'], shear=self.hyp['shear'], border=self.img_size // 2) # border to remove # Letterbox img, ratio, pad = letterbox(img, new_shape=self.img_size, auto=self.rect, scaleup=self.augment, stride=self.hyp['stride']) targets[:, 2:6] = xyxy2xywh(targets[:, 2:6]) / self.img_size / ratio # normalized xywh (to grid cell) # Load into tensor img = np.array(img).transpose(2, 0, 1) # HWC to CHW img = torch.from_numpy(img).to(torch.float32) # uint8 to fp16/32 targets = targets[torch.where(targets[:, 0] == index % len(self.img_files))] # filter by image index return img, targets, index, img_path def coco_index(self, index): """Map dataset index to COCO index (minus 1)""" return int(Path(self.img_files[index]).stem) - 1 @staticmethod def collate_fn(batch): img, label, _, path = zip(*batch) # transposed for i, l in enumerate(label): l[:, 0] = i # add target image index for build_targets() return torch.stack(img, 0), torch.cat(label, 0), path class LoadImages(Dataset): # for inference def __init__(self, path, img_size=640, stride=32, auto=True): path = str(Path(path)) # os-agnostic if os.path.isdir(path): files = sorted(glob.glob('%s/*.*' % path)) elif os.path.isfile(path): files = [path] else: raise Exception(f'Error: {path} does not exist') images = [x for x in files if os.path.splitext(x)[-1].lower() in img_formats] videos = [x for x in files if os.path.splitext(x)[-1].lower() in vid_formats] ni, nv = len(images), len(videos) self.img_size = img_size self.stride = stride self.auto = auto self.video_flag = [False] * ni + [True] * nv self.img_files = images + videos self.cap = [cv2.VideoCapture(x) for x in videos] self.frame = [None] * nv self.ret = [False] * nv self.path = path def __len__(self): return len(self.img_files) def __getitem__(self, index): if self.video_flag[index]: return self.load_video(index) else: return self.load_image(index) def load_image(self, index): img_path = self.img_files[index] img = cv2.imread(img_path) # BGR assert img is not None, 'Image Not Found ' + img_path h0, w0 = img.shape[:2] # orig hw img = letterbox(img, new_shape=self.img_size, auto=self.auto)[0] img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416 img = np.ascontiguousarray(img) return torch.from_numpy(img), index, img_path, (h0, w0) def load_video(self, index): cap = self.cap[index] while True: self.ret[index], frame = cap.read() if not self.ret[index]: break if self.frame[index] is None: self.frame[index] = letterbox(frame, new_shape=self.img_size, auto=self.auto)[0] self.frame[index] = self.frame[index][:, :, ::-1].transpose(2, 0, 1) self.frame[index] = np.ascontiguousarray(self.frame[index]) else: self.frame[index] = torch.cat((self.frame[index][self.stride:], letterbox(frame, new_shape=self.img_size, auto=self.auto)[0]), 0) if self.ret[index]: return self.frame[index], index, self.img_files[index], frame.shape[:2] def __del__(self): if hasattr(self, 'cap'): for c in self.cap: c.release() def letterbox(img, new_shape=640, color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32): # Resize and pad image while meeting stride-multiple constraints shape = img.shape[:2] # current shape [height, width] if isinstance(new_shape, int): ratio = float(new_shape) / max(shape) else: ratio = min(float(new_shape[0]) / shape[0], float(new_shape[1]) / shape[1]) if ratio != 1: # always resize down, only resize up if shape < new_shape * 1.5 if scaleup or (ratio < 1 and max(shape) * ratio > stride * 1.5): interp = cv2.INTER_LINEAR if ratio < 1: img = cv2.resize(img, (int(round(shape[1] * ratio)), int(round(shape[0] * ratio))), interpolation=interp) else: img = cv2.resize(img, (int(round(shape[1] * ratio)), int(round(shape[0] * ratio))), interpolation=interp) else: interp = cv2.INTER_AREA img = cv2.resize(img, (int(round(shape[1] * ratio)), int(round(shape[0] * ratio))), interpolation=interp) new_shape = [round(shape[1] * ratio), round(shape[0] * ratio)] # Compute stride-aligned boxes if auto: stride = int(np.ceil(new_shape[0] / stride) * stride) top_pad = (stride - new_shape[0]) % stride # add top-padding (integer pixels only) left_pad = (stride - new_shape[1]) % stride # add left-padding (integer pixels only) if top_pad or left_pad: img = cv2.copyMakeBorder(img, top_pad // 2, top_pad - top_pad // 2, left_pad // 2, left_pad - left_pad // 2, cv2.BORDER_CONSTANT, value=color) # add border else: stride = 32 top_pad, left_pad = 0, 0 # Pad to rectangular shape divisible by stride h, w = img.shape[:2] if scaleFill or new_shape == (w, h): # scale-up width and height new_img = np.zeros((new_shape[1], new_shape[0], 3), dtype=np.uint8) + color # whole image nh, nw = h, w else: # scale width OR height nh = new_shape[1] - top_pad nw = new_shape[0] - left_pad assert nh > 0 and nw > 0, 'image size < new_size' new_img = np.zeros((new_shape[1], new_shape[0], 3), dtype=np.uint8) + color # whole image if nw / w <= nh / h: # resize by width, then pad height new_w = new_shape[0] new_h = int(nh * new_w / nw) assert new_h > 0, 'image size < new_size' img = cv2.resize(img, (new_w, new_h), interpolation=cv2.INTER_LINEAR) top = top_pad // 2 bottom = top_pad - top left = left_pad // 2 right = left_pad - left new_img[top:top + new_h, left:left + new_w] = img else: # resize by height, then pad width new_h = new_shape[1] new_w = int(nw * new_h / nh) assert new_w > 0, 'image size < new_size' img = cv2.resize(img, (new_w, new_h), interpolation=cv2.INTER_LINEAR) top = top_pad // 2 bottom = top_pad - top left = left_pad // 2 right = left_pad - left new_img[top:top + new_h, left:left + new_w] = img return new_img, ratio, (top_pad, left_pad) def xywh2xyxy(x): # Convert bounding box format from [x, y, w, h] to [x1, y1, x2, y2] y = x.copy() if isinstance(x, np.ndarray) else np.array(x) y[..., 0] = x[..., 0] - x[..., 2] / 2 y[..., 1] = x[..., 1] - x[..., 3] / 2 y[..., 2] = x[..., 0] + x[..., 2] / 2 y[..., 3] = x[..., 1] + x[..., 3] / 2 return y def xyxy2xywh(x): # Convert bounding
阅读全文

相关推荐

最新推荐

recommend-type

数据库基础测验20241113.doc

数据库基础测验20241113.doc
recommend-type

微信小程序下拉选择组件

微信小程序下拉选择组件
recommend-type

黑板风格计算机毕业答辩PPT模板下载

资源摘要信息:"创意经典黑板风格毕业答辩论文课题报告动态ppt模板" 在当前数字化教学与展示需求日益增长的背景下,PPT模板成为了表达和呈现学术成果及教学内容的重要工具。特别针对计算机专业的学生而言,毕业设计的答辩PPT不仅仅是一个展示的平台,更是其设计能力、逻辑思维和审美观的综合体现。因此,一个恰当且创意十足的PPT模板显得尤为重要。 本资源名为“创意经典黑板风格毕业答辩论文课题报告动态ppt模板”,这表明该模板具有以下特点: 1. **创意设计**:模板采用了“黑板风格”的设计元素,这种风格通常模拟传统的黑板书写效果,能够营造一种亲近、随性的学术氛围。该风格的模板能够帮助展示者更容易地吸引观众的注意力,并引发共鸣。 2. **适应性强**:标题表明这是一个毕业答辩用的模板,它适用于计算机专业及其他相关专业的学生用于毕业设计课题的汇报。模板中设计的版式和内容布局应该是灵活多变的,以适应不同课题的展示需求。 3. **动态效果**:动态效果能够使演示内容更富吸引力,模板可能包含了多种动态过渡效果、动画效果等,使得展示过程生动且充满趣味性,有助于突出重点并维持观众的兴趣。 4. **专业性质**:由于是毕业设计用的模板,因此该模板在设计时应充分考虑了计算机专业的特点,可能包括相关的图表、代码展示、流程图、数据可视化等元素,以帮助学生更好地展示其研究成果和技术细节。 5. **易于编辑**:一个良好的模板应具备易于编辑的特性,这样使用者才能根据自己的需要进行调整,比如替换文本、修改颜色主题、更改图片和图表等,以确保最终展示的个性和专业性。 结合以上特点,模板的使用场景可以包括但不限于以下几种: - 计算机科学与技术专业的学生毕业设计汇报。 - 计算机工程与应用专业的学生论文展示。 - 软件工程或信息技术专业的学生课题研究成果展示。 - 任何需要进行学术成果汇报的场合,比如研讨会议、学术交流会等。 对于计算机专业的学生来说,毕业设计不仅仅是完成一个课题,更重要的是通过这个过程学会如何系统地整理和表述自己的思想。因此,一份好的PPT模板能够帮助他们更好地完成这个任务,同时也能够展现出他们的专业素养和对细节的关注。 此外,考虑到模板是一个压缩文件包(.zip格式),用户在使用前需要解压缩,解压缩后得到的文件为“创意经典黑板风格毕业答辩论文课题报告动态ppt模板.pptx”,这是一个可以直接在PowerPoint软件中打开和编辑的演示文稿文件。用户可以根据自己的具体需要,在模板的基础上进行修改和补充,以制作出一个具有个性化特色的毕业设计答辩PPT。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

提升点阵式液晶显示屏效率技术

![点阵式液晶显示屏显示程序设计](https://iot-book.github.io/23_%E5%8F%AF%E8%A7%81%E5%85%89%E6%84%9F%E7%9F%A5/S3_%E8%A2%AB%E5%8A%A8%E5%BC%8F/fig/%E8%A2%AB%E5%8A%A8%E6%A0%87%E7%AD%BE.png) # 1. 点阵式液晶显示屏基础与效率挑战 在现代信息技术的浪潮中,点阵式液晶显示屏作为核心显示技术之一,已被广泛应用于从智能手机到工业控制等多个领域。本章节将介绍点阵式液晶显示屏的基础知识,并探讨其在提升显示效率过程中面临的挑战。 ## 1.1 点阵式显
recommend-type

在SoC芯片的射频测试中,ATE设备通常如何执行系统级测试以保证芯片量产的质量和性能一致?

SoC芯片的射频测试是确保无线通信设备性能的关键环节。为了在量产阶段保证芯片的质量和性能一致性,ATE(Automatic Test Equipment)设备通常会执行一系列系统级测试。这些测试不仅关注芯片的电气参数,还包含电磁兼容性和射频信号的完整性检验。在ATE测试中,会根据芯片设计的规格要求,编写定制化的测试脚本,这些脚本能够模拟真实的无线通信环境,检验芯片的射频部分是否能够准确处理信号。系统级测试涉及对芯片基带算法的验证,确保其能够有效执行无线信号的调制解调。测试过程中,ATE设备会自动采集数据并分析结果,对于不符合标准的芯片,系统能够自动标记或剔除,从而提高测试效率和减少故障率。为了
recommend-type

CodeSandbox实现ListView快速创建指南

资源摘要信息:"listview:用CodeSandbox创建" 知识点一:CodeSandbox介绍 CodeSandbox是一个在线代码编辑器,专门为网页应用和组件的快速开发而设计。它允许用户即时预览代码更改的效果,并支持多种前端开发技术栈,如React、Vue、Angular等。CodeSandbox的特点是易于使用,支持团队协作,以及能够直接在浏览器中编写代码,无需安装任何软件。因此,它非常适合初学者和快速原型开发。 知识点二:ListView组件 ListView是一种常用的用户界面组件,主要用于以列表形式展示一系列的信息项。在前端开发中,ListView经常用于展示从数据库或API获取的数据。其核心作用是提供清晰的、结构化的信息展示方式,以便用户可以方便地浏览和查找相关信息。 知识点三:用JavaScript创建ListView 在JavaScript中创建ListView通常涉及以下几个步骤: 1. 创建HTML的ul元素作为列表容器。 2. 使用JavaScript的DOM操作方法(如document.createElement, appendChild等)动态创建列表项(li元素)。 3. 将创建的列表项添加到ul容器中。 4. 通过CSS来设置列表和列表项的样式,使其符合设计要求。 5. (可选)为ListView添加交互功能,如点击事件处理,以实现更丰富的用户体验。 知识点四:在CodeSandbox中创建ListView 在CodeSandbox中创建ListView可以简化开发流程,因为它提供了一个在线环境来编写代码,并且支持实时预览。以下是使用CodeSandbox创建ListView的简要步骤: 1. 打开CodeSandbox官网,创建一个新的项目。 2. 在项目中创建或编辑HTML文件,添加用于展示ListView的ul元素。 3. 创建或编辑JavaScript文件,编写代码动态生成列表项,并将它们添加到ul容器中。 4. 使用CodeSandbox提供的实时预览功能,即时查看ListView的效果。 5. 若有需要,继续编辑或添加样式文件(通常是CSS),对ListView进行美化。 6. 利用CodeSandbox的版本控制功能,保存工作进度和团队协作。 知识点五:实践案例分析——listview-main 文件名"listview-main"暗示这可能是一个展示如何使用CodeSandbox创建基本ListView的项目。在这个项目中,开发者可能会包含以下内容: 1. 使用React框架创建ListView的示例代码,因为React是目前较为流行的前端库。 2. 展示如何将从API获取的数据渲染到ListView中,包括数据的获取、处理和展示。 3. 提供基本的样式设置,展示如何使用CSS来美化ListView。 4. 介绍如何在CodeSandbox中组织项目结构,例如如何分离组件、样式和脚本文件。 5. 包含一个简单的用户交互示例,例如点击列表项时弹出详细信息等。 总结来说,通过标题“listview:用CodeSandbox创建”,我们了解到本资源是一个关于如何利用CodeSandbox这个在线开发环境,来快速实现一个基于JavaScript的ListView组件的教程或示例项目。通过上述知识点的梳理,可以加深对如何创建ListView组件、CodeSandbox平台的使用方法以及如何在该平台中实现具体功能的理解。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

点阵式显示屏常见故障诊断方法

![点阵式显示屏常见故障诊断方法](http://www.huarongled.com/resources/upload/aee91a03f2a3e49/1587708404693.png) # 1. 点阵式显示屏的工作原理和组成 ## 工作原理简介 点阵式显示屏的工作原理基于矩阵排列的像素点,每个像素点可以独立地被控制以显示不同的颜色和亮度,从而组合成复杂和精细的图像。其核心是通过驱动电路对各个LED或液晶单元进行单独控制,实现了图像的呈现。 ## 显示屏的组成元素 组成点阵式显示屏的主要元素包括显示屏面板、驱动电路、控制单元和电源模块。面板包含了像素点矩阵,驱动电路则负责对像素点进行电
recommend-type

名词性从句包括哪些类别?它们各自有哪些引导词?请结合例句详细解释。

名词性从句分为四种:主语从句、宾语从句、表语从句和同位语从句。每种从句都有其特定的引导词,它们在句中承担不同的语法功能。要掌握名词性从句的运用,了解这些引导词的用法是关键。让我们深入探讨。 参考资源链接:[名词性从句解析:定义、种类与引导词](https://wenku.csdn.net/doc/bp0cjnmxco?spm=1055.2569.3001.10343) 首先,主语从句通常由whether, if, what, who, whose, how等引导词引导。它在句子中担任主语的角色,如例句'Whether he comes or not makes no differe