用face_recognition库实现无缝换脸的python程序
时间: 2023-10-10 12:10:26 浏览: 90
要实现无缝换脸的Python程序,可以使用`face_recognition`库和`OpenCV`库。下面是一个简单的程序示例:
```python
import face_recognition
import cv2
# 加载图片和模型
image1 = face_recognition.load_image_file("image1.jpg")
image2 = face_recognition.load_image_file("image2.jpg")
face_encoding1 = face_recognition.face_encodings(image1)[0]
face_encoding2 = face_recognition.face_encodings(image2)[0]
# 识别人脸位置
face_locations1 = face_recognition.face_locations(image1)
face_locations2 = face_recognition.face_locations(image2)
# 获取人脸关键点
landmarks1 = face_recognition.face_landmarks(image1, face_locations1)
landmarks2 = face_recognition.face_landmarks(image2, face_locations2)
# 创建一个空白的图像,大小与第一张图片相同
output_image = cv2.imread("image1.jpg")
# 将第二张图片的人脸替换到第一张图片上
for face_location2, landmark2 in zip(face_locations2, landmarks2):
# 计算换脸后的人脸位置和大小
top, right, bottom, left = face_location2
width = right - left
height = bottom - top
center = (left + width//2, top + height//2)
# 对第二张图片的人脸进行仿射变换
M = cv2.estimateAffinePartial2D(
src=landmark2["chin"],
dst=landmarks1[0]["chin"],
method=cv2.RANSAC)[0]
warped_image2 = cv2.warpAffine(
image2, M, (output_image.shape[1], output_image.shape[0]))
# 将换脸后的人脸复制到空白图像上
mask = 255 * np.ones(warped_image2.shape, warped_image2.dtype)
center = (left + width//2, top + height//2)
output_image = cv2.seamlessClone(
warped_image2, output_image, mask, center, cv2.NORMAL_CLONE)
# 显示结果
cv2.imshow("Output Image", output_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
这个程序首先加载两张图片和人脸模型,然后使用`face_recognition`库识别出两张图片中的人脸位置和关键点。接下来,程序对第二张图片的人脸进行仿射变换,将其转换为与第一张图片中人脸位置和大小相同的形状。最后,程序使用`OpenCV`库的`seamlessClone`函数将换脸后的人脸复制到空白图像上,并显示结果。
阅读全文