gan python实现
时间: 2023-07-07 19:18:36 浏览: 113
GAN(Generative Adversarial Networks)是一种生成模型,它由两个神经网络组成:一个生成器网络和一个判别器网络。生成器网络通过学习数据分布来生成新的数据样本,判别器网络则试图将生成的样本与真实样本区分开来。
以下是使用Python和TensorFlow实现GAN的基本步骤:
1. 导入必要的库和模块:
```python
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
```
2. 定义生成器和判别器网络:
```python
def generator(z, output_dim, n_hidden=128, n_layer=2, reuse=False):
with tf.variable_scope('generator', reuse=reuse):
h1 = tf.layers.dense(z, n_hidden, activation=tf.nn.relu)
for i in range(n_layer - 1):
h1 = tf.layers.dense(h1, n_hidden, activation=tf.nn.relu)
out = tf.layers.dense(h1, output_dim, activation=tf.nn.tanh)
return out
def discriminator(x, n_hidden=128, n_layer=2, reuse=False):
with tf.variable_scope('discriminator', reuse=reuse):
h1 = tf.layers.dense(x, n_hidden, activation=tf.nn.relu)
for i in range(n_layer - 1):
h1 = tf.layers.dense(h1, n_hidden, activation=tf.nn.relu)
out = tf.layers.dense(h1, 1, activation=None)
return out
```
3. 定义GAN模型:
```python
# 定义占位符
real_data = tf.placeholder(tf.float32, shape=[None, input_dim])
z = tf.placeholder(tf.float32, shape=[None, z_dim])
# 定义生成器和判别器
G = generator(z, output_dim)
D_real = discriminator(real_data)
D_fake = discriminator(G, reuse=True)
# 定义损失函数
D_loss_real = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(logits=D_real, labels=tf.ones_like(D_real)))
D_loss_fake = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(logits=D_fake, labels=tf.zeros_like(D_fake)))
D_loss = D_loss_real + D_loss_fake
G_loss = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(logits=D_fake, labels=tf.ones_like(D_fake)))
# 定义优化器
D_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'discriminator')
G_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'generator')
D_train_op = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(D_loss, var_list=D_vars)
G_train_op = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(G_loss, var_list=G_vars)
```
4. 训练GAN模型:
```python
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for i in range(num_epochs):
for j in range(num_batches):
# 生成随机噪声
z_batch = np.random.uniform(-1, 1, size=[batch_size, z_dim])
# 获取真实数据
real_data_batch = ...
# 训练判别器
_, D_loss_curr = sess.run([D_train_op, D_loss],
feed_dict={real_data: real_data_batch, z: z_batch})
# 训练生成器
_, G_loss_curr = sess.run([G_train_op, G_loss], feed_dict={z: z_batch})
# 打印损失函数
if i % 1000 == 0:
print('Epoch: {}, D loss: {:.4f}, G loss: {:.4f}'.format(i, D_loss_curr, G_loss_curr))
# 生成新样本
z_test = np.random.uniform(-1, 1, size=[num_samples, z_dim])
samples = sess.run(G, feed_dict={z: z_test})
# 可视化生成的样本
plt.scatter(samples[:, 0], samples[:, 1])
plt.show()
```
以上就是GAN的Python实现过程。需要注意的是,GAN模型的训练过程比较复杂,需要仔细调参和调试才能得到好的结果。
阅读全文