3维多旅行商matlab实现
时间: 2023-11-02 22:21:33 浏览: 178
旅行商问题matlab实现
多旅行商问题(MTSP)是旅行商问题(TSP)的扩展,它需要解决多个旅行商的路径问题。对于三维空间,可以考虑使用遗传算法等启发式算法来解决MTSP。下面是一个使用遗传算法来解决3维多旅行商问题的Matlab实现示例:
```matlab
function [best_path, best_cost] = mtsp_genetic_algorithm(city_locations, num_salesmen, pop_size, num_gen, crossover_prob, mutation_prob)
% city_locations: 表示城市坐标位置的矩阵,每一行代表一个城市的坐标
% num_salesmen: 旅行商数量
% pop_size: 种群个数
% num_gen: 迭代次数
% crossover_prob: 交叉概率
% mutation_prob: 变异概率
% 计算城市之间的距离矩阵
num_cities = size(city_locations, 1);
dist_matrix = zeros(num_cities, num_cities);
for i = 1:num_cities
for j = i+1:num_cities
dist_matrix(i,j) = sqrt(sum((city_locations(i,:)-city_locations(j,:)).^2));
dist_matrix(j,i) = dist_matrix(i,j);
end
end
% 初始化种群
pop = zeros(num_cities, num_salesmen, pop_size);
for i = 1:pop_size
for j = 1:num_salesmen
pop(:,j,i) = randperm(num_cities)';
end
end
% 迭代求解
for gen = 1:num_gen
% 计算适应度
fitness = zeros(pop_size, 1);
for i = 1:pop_size
cost = 0;
for j = 1:num_salesmen
route = pop(:,j,i);
cost = cost + dist_matrix(route(1),route(end));
for k = 1:length(route)-1
cost = cost + dist_matrix(route(k),route(k+1));
end
end
fitness(i) = 1/cost;
end
% 选择操作
parents = zeros(num_cities, num_salesmen, 2);
for i = 1:2
% 轮盘赌选择
idx = randperm(pop_size);
for j = 1:pop_size
if rand < fitness(idx(j))/sum(fitness(idx))
parents(:,:,i) = pop(:,:,idx(j));
break;
end
end
end
% 交叉操作
if rand < crossover_prob
% 随机选择两个旅行商
salesmen_idx = randperm(num_salesmen,2);
% 随机选择两个交叉点
cross_idx = sort(randperm(num_cities,2));
% 交叉
temp1 = parents(cross_idx(1):cross_idx(2),salesmen_idx(1),1);
temp2 = parents(cross_idx(1):cross_idx(2),salesmen_idx(2),2);
parents(cross_idx(1):cross_idx(2),salesmen_idx(1),1) = temp2;
parents(cross_idx(1):cross_idx(2),salesmen_idx(2),2) = temp1;
end
% 变异操作
if rand < mutation_prob
% 随机选择一个旅行商
salesman_idx = randperm(num_salesmen,1);
% 随机选择两个变异点
mut_idx = sort(randperm(num_cities,2));
% 变异
temp = parents(:,salesman_idx,1);
temp(mut_idx(1)) = parents(mut_idx(2),salesman_idx,1);
temp(mut_idx(2)) = parents(mut_idx(1),salesman_idx,1);
parents(:,salesman_idx,1) = temp;
end
% 合并操作
new_pop = zeros(num_cities, num_salesmen, pop_size);
new_pop(:,:,1:2) = parents;
for i = 3:pop_size
% 轮盘赌选择
idx = randperm(pop_size);
for j = 1:pop_size
if rand < fitness(idx(j))/sum(fitness(idx))
new_pop(:,:,i) = pop(:,:,idx(j));
break;
end
end
end
% 更新种群
pop = new_pop;
end
% 计算最优解
best_cost = Inf;
for i = 1:pop_size
cost = 0;
for j = 1:num_salesmen
route = pop(:,j,i);
cost = cost + dist_matrix(route(1),route(end));
for k = 1:length(route)-1
cost = cost + dist_matrix(route(k),route(k+1));
end
end
if cost < best_cost
best_cost = cost;
best_path = pop(:,:,i);
end
end
end
```
需要注意的是,这是一种基本的实现方式,可能存在一些不足之处,需要根据实际情况进行调整和改进。
阅读全文