解释以下代码print('Training') model_stateless.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1, validation_data=(x_test, y_test), shuffle=False) print('Predicting') predicted_stateless = model_stateless.predict(x_test, batch_size=batch_size) # ---------------------------- print('Plotting Results') plt.subplot(3, 1, 1) plt.plot(y_test) plt.title('Expected') plt.subplot(3, 1, 2) # 删除第一个 "tsteps-1",因为不可能预测它们,因为不存在要使用的 "上一个" 时间步 plt.plot((y_test - predicted_stateful).flatten()[tsteps - 1:]) plt.title('Stateful: Expected - Predicted') plt.subplot(3, 1, 3) plt.plot((y_test - predicted_stateless).flatten()) plt.title('Stateless: Expected - Predicted') plt.show()
时间: 2024-04-28 22:22:55 浏览: 143
这段代码用于绘制模型预测结果的图表。在训练完成后,首先使用 predict() 方法对测试数据进行预测,并将预测结果存储在 predicted_stateless 变量中。接下来,使用 Matplotlib 库中的 subplot() 和 plot() 方法绘制三个子图,分别显示预期结果、stateful LSTM 模型的预测误差和 stateless LSTM 模型的预测误差。其中,第二个子图中删除了第一个 "tsteps-1",因为在这些时间步之前,没有上一个时间步可以用来进行预测。最后,使用 show() 方法显示绘制的图表。
相关问题
解释以下代码print('Training') for i in range(epochs): print('Epoch', i + 1, '/', epochs) # 请注意,批次 i 中样品 i 的最后状态将用作下一批中样品 i 的初始状态。 # 因此,我们同时以低于 data_input 中包含的原始序列的分辨率对 batch_size 系列进行训练。 # 这些系列中的每一个都偏移一个步骤,并且可以使用 data_input[i::batch_size] 提取。 model_stateful.fit(x_train, y_train, batch_size=batch_size, epochs=1, verbose=1, validation_data=(x_test, y_test), shuffle=False) model_stateful.reset_states() print('Predicting') predicted_stateful = model_stateful.predict(x_test, batch_size=batch_size) print('Creating Stateless Model...') model_stateless = create_model(stateful=False)
这段代码是一个使用 stateful LSTM 模型进行训练和预测的示例。在这个模型中,批次 i 中样品 i 的最后状态将用作下一批中样品 i 的初始状态,因此每个批次的训练都需要在上一次训练的基础上进行。代码中的 for 循环用于控制训练的 epoch 数量,每个 epoch 都会进行一次训练和一次预测。在每个 epoch 中,模型使用 fit() 方法来进行训练,同时使用 reset_states() 方法在训练结束后重置模型状态。在训练完成后,模型使用 predict() 方法对测试数据进行预测,并创建一个新的 stateless LSTM 模型。
return tf.random.stateless_uniform( tensorflow.python.framework.errors_impl.ResourceExhaustedError: {{function_node __wrapped__AddV2_device_/job:localhost/replica:0/task:0/device:GPU:0}} failed to allocate memory [Op:AddV2]
这个错误是 TensorFlow 运行时发出的,表示在执行 `tf.random.stateless_uniform` 操作时出现了内存不足的情况。具体来说,是因为显存不足导致 TensorFlow 无法分配内存,从而报告了这个错误。可能是因为模型太大或者数据量太大,导致显存不够。
解决方法可以尝试减小模型规模或者训练数据集的大小,或者使用更大的显存。另外,也可以尝试设置环境变量 `TF_GPU_ALLOCATOR=cuda_malloc_async` 来提高显存使用效率。如果这个错误频繁出现,建议检查一下显卡驱动是否最新、显存是否正常等硬件问题。
阅读全文