DRAM贝叶斯抽样算法 matlab举例
时间: 2023-09-06 20:12:00 浏览: 29
以下是MATLAB实现DRAM贝叶斯抽样算法的示例代码:
首先,需要安装DRAM工具箱,可以通过以下命令安装:
```
>> addpath('path/to/dram_toolbox')
```
然后,可以使用以下代码创建一个DRAM对象:
```
>> mcmc = dram_create('my_model.m', 'my_data.mat', 'init_params.mat');
```
其中,'my_model.m'是模型函数文件,'my_data.mat'是数据文件,'init_params.mat'是初始参数文件。
接下来,可以使用以下代码运行DRAM抽样算法:
```
>> mcmc = dram_run(mcmc);
```
运行完成后,可以使用以下代码获取抽样结果:
```
>> results = dram_analysis(mcmc);
```
其中,results是一个结构体,包含以下字段:
- results.params:抽样得到的参数值
- results.log_posterior:对数后验概率的抽样值
- results.log_likelihood:对数似然函数的抽样值
- results.log_prior:对数先验概率的抽样值
可以使用以下代码绘制抽样结果的直方图:
```
>> histogram(results.params(:, 1))
```
其中,results.params(:, 1)表示第一个参数的抽样值。
相关问题
拉普拉斯先验贝叶斯MCMC抽样算法 matlab举例
以下是拉普拉斯先验贝叶斯MCMC抽样算法的matlab代码:
%% Generate simulated data
n = 100; % sample size
x = sort(rand(n,1)*10);
y = sin(x) + normrnd(0,0.1,n,1);
%% Define posterior distribution
% Bayesian linear regression model: y = beta0 + beta1*x + epsilon
% Prior distribution: beta0 ~ Laplace(0,tau0), beta1 ~ Laplace(0,tau1), epsilon ~ N(0,sigma^2)
% Posterior distribution: p(beta0,beta1,sigma^2|y,x) proportional to p(y|x,beta0,beta1,sigma^2)*p(beta0)*p(beta1)*p(sigma^2)
% where p(y|x,beta0,beta1,sigma^2) = N(y|beta0+beta1*x,sigma^2)
% Define prior distributions
tau0 = 1; % scale parameter of Laplace prior for beta0
tau1 = 1; % scale parameter of Laplace prior for beta1
sigma0 = 0.1; % scale parameter of inverse-Gamma prior for sigma^2
nu0 = 1; % shape parameter of inverse-Gamma prior for sigma^2
logprior = @(theta) loglaplace(theta(1),0,tau0) + loglaplace(theta(2),0,tau1) + ...
loginvgamma(theta(3),sigma0,nu0);
% Define likelihood function
loglik = @(theta) sum(lognormpdf(y,theta(1)+theta(2)*x,sqrt(theta(3))));
% Define posterior distribution
logpost = @(theta) loglik(theta) + logprior(theta);
%% Run MCMC
% Initialize parameters
theta = [0;0;1];
niter = 10000;
burnin = 1000;
thin = 5;
nsamp = (niter-burnin)/thin;
samples = zeros(nsamp,3);
% Run Metropolis-Hastings algorithm
for i = 1:niter
% Generate proposal
theta_prop = mvnrnd(theta,diag([0.1,0.1,0.01]));
% Calculate acceptance probability
logalpha = logpost(theta_prop) - logpost(theta);
% Accept or reject proposal
if log(rand)<logalpha
theta = theta_prop;
end
% Store sample
if i>burnin && mod(i-burnin,thin)==0
samples((i-burnin)/thin,:) = theta;
end
end
%% Plot results
% Plot posterior distributions
figure;
subplot(3,1,1);
histogram(samples(:,1),50,'Normalization','pdf');
title('Posterior distribution of beta0');
subplot(3,1,2);
histogram(samples(:,2),50,'Normalization','pdf');
title('Posterior distribution of beta1');
subplot(3,1,3);
histogram(sqrt(samples(:,3)),50,'Normalization','pdf');
title('Posterior distribution of sigma');
% Plot posterior predictive distribution
figure;
xgrid = linspace(0,10,100)';
ngrid = length(xgrid);
ypred = zeros(ngrid,nsamp);
for i = 1:nsamp
ypred(:,i) = normrnd(samples(i,1)+samples(i,2)*xgrid,sqrt(samples(i,3)));
end
plot(x,y,'ro',xgrid,mean(ypred,2),'b--');
legend('Observed data','Posterior mean of y(x)');
xlabel('x');
ylabel('y');
贝叶斯分类算法matlab
以下是使用Matlab实现朴素贝叶斯分类算法的示例代码:
```matlab
% 加载数据集
load fisheriris
% 将数据集分为训练集和测试集
cv = cvpartition(species,'HoldOut',0.3);
idx = cv.test;
% 训练集
Xtrain = meas(~idx,:);
Ytrain = species(~idx);
% 测试集
Xtest = meas(idx,:);
Ytest = species(idx);
% 训练朴素贝叶斯分类器
NBModel = fitcnb(Xtrain,Ytrain,'DistributionNames','kernel');
% 预测测试集
Ypredict = predict(NBModel,Xtest);
% 计算分类准确率
accuracy = sum(Ypredict == Ytest)/length(Ytest);
disp(['分类准确率为:',num2str(accuracy)]);
```
该示例代码使用鸢尾花数据集进行训练和测试,首先将数据集分为训练集和测试集,然后使用`fitcnb`函数训练朴素贝叶斯分类器,最后使用`predict`函数对测试集进行预测,并计算分类准确率。
相关推荐












