分析下列代码k=2; omega=2*pi; x1=(0:0.3:30); z1=(30:-0.3:0); x2=(30:0.3:60); z2=(0:0.3:30); Ei=zeros(size(x1)); Er=zeros(size(x1)); l=zeros(size(x1)); t=0; for i=1:300 if i<=101 Ei(1:i)=cos(20*pi*t-0.35*(x1(1:i)-z1(i:i))); quiver3(x1,l,z1,l,Ei,l); end if i>101 Ei=cos(20*pi*t-0.35*(x1-z1)); if i<=202 Er(1:i-101)=-cos(20*pi*t-0.35*(x2(1:i-101)+z2(1:i-101))); end if i>202 Er=-cos(20*pi*t-0.35*(x2+z2)); end quiver3(x1,l,z1,l,Ei,l); hold on quiver3(x2,l,z2,l,Er,l); end axis([0,60,-10,10,0,30]); mov(i)=getframe(gcf); pause(0.01); t=t+0.001; hold off end movie2avi(mov,'垂直极化波斜入射到导体表面.vi');

时间: 2024-01-12 22:02:19 浏览: 17
这段代码的作用是绘制垂直极化波斜入射到导体表面时的电场分布动画,并将动画转换为AVI格式的视频文件。 代码中首先定义了变量k和omega,分别表示波数和角频率。然后定义了空间坐标x1、z1、x2、z2,以及电场分量Ei、Er、l和时间t。 在for循环中,首先判断i的值是否小于等于101,如果是,则计算前半部分导体表面的电场分量Ei,并使用quiver3函数绘制电场矢量图。 如果i的值大于101,则计算后半部分导体表面的电场分量Er,并分别使用quiver3函数绘制前半部分和后半部分的电场矢量图。同时,使用hold on函数使得前半部分和后半部分的电场矢量图可以同时显示。 在每次循环结束后,使用getframe函数获取当前图形窗口的帧,并将其存入mov数组中。同时,使用pause函数暂停0.01秒,以便观察每一帧的电场分布。 最后,使用movie2avi函数将mov数组转换为AVI格式的视频文件,并将其命名为“垂直极化波斜入射到导体表面.vi”。 通过以上的代码分析,可以得出该代码的作用是绘制垂直极化波斜入射到导体表面时的电场分布动画,并将动画转换为AVI格式的视频文件。其中,动画中的电场分布受波数、角频率、空间坐标、时间等因素的影响。
相关问题

请对下面的代码做出相同形式的修改:k = 2; omega = 2*pi; x1 = (0:0.3:30); z1 = (30:-0.3:0); x2 = (30:0.3:60); z2 = (0:0.3:30); Hi = zeros(size(x1)); Hr = zeros(size(x1)); l = zeros(size(x1)); t = 0; for i = 1:300 if i <= 101 Hi(1:i) = cos(20*pi*t - 0.35*(x1(1:i)-z1(i:i))); quiver3(x1, l, z1, Hi, l, l); end if i > 101 Hi = cos(20*pi*t - 0.35*(x1-z1)); if i <= 202 Hr(1:i-101) = -cos(20*pi*t - 0.35*(x2(1:i-101)+z2(1:i-101))); end if i > 202 Hr = -cos(20*pi*t - 0.35*(x2+z2)); end quiver3(x1, l, z1, Hi, l, l); hold on; quiver3(x2, l, z2, Hr, l, l); end axis([0, 60, -10, 10, 0, 30]); mov(i) = getframe(gcf); pause(0.01); t = t + 0.001; hold off; end movie2avi(mov, '垂直极化波斜入射到导体表面.avi');

好的,对于这段代码,我们可以使用和上面相同的方法将输出格式改为 gif。修改后的代码如下: ``` k = 2; omega = 2*pi; x1 = (0:0.3:30); z1 = (30:-0.3:0); x2 = (30:0.3:60); z2 = (0:0.3:30); Hi = zeros(size(x1)); Hr = zeros(size(x1)); l = zeros(size(x1)); t = 0; for i = 1:300 if i <= 101 Hi(1:i) = cos(20*pi*t - 0.35*(x1(1:i)-z1(i:i))); quiver3(x1, l, z1, Hi, l, l); end if i > 101 Hi = cos(20*pi*t - 0.35*(x1-z1)); if i <= 202 Hr(1:i-101) = -cos(20*pi*t - 0.35*(x2(1:i-101)+z2(1:i-101))); end if i > 202 Hr = -cos(20*pi*t - 0.35*(x2+z2)); end quiver3(x1, l, z1, Hi, l, l); hold on; quiver3(x2, l, z2, Hr, l, l); end axis([0, 60, -10, 10, 0, 30]); mov(i) = getframe(gcf); pause(0.01); t = t + 0.001; hold off; end filename = '垂直极化波斜入射到导体表面.gif'; for i = 1:length(mov) [imind, cm] = rgb2ind(mov(i).cdata, 256); if i == 1 imwrite(imind, cm, filename, 'gif', 'Loopcount', inf); else imwrite(imind, cm, filename, 'gif', 'WriteMode', 'append'); end end ``` 与上面的代码相比,我们只需要将最后一行的 `movie2avi` 函数改成使用 `imwrite` 函数保存 gif 即可。

根据下面代码给出相同物理条件下,绘制垂直极化波斜入射到导体表面时的磁场分布动画matlab代码。k=2; omega=2*pi; x1=(0:0.3:30); z1=(30:-0.3:0); x2=(30:0.3:60); z2=(0:0.3:30); Ei=zeros(size(x1)); Er=zeros(size(x1)); l=zeros(size(x1)); t=0; for i=1:300 if i<=101 Ei(1:i)=cos(20*pi*t-0.35*(x1(1:i)-z1(i:i))); quiver3(x1,l,z1,l,Ei,l); end if i>101 Ei=cos(20*pi*t-0.35*(x1-z1)); if i<=202 Er(1:i-101)=-cos(20*pi*t-0.35*(x2(1:i-101)+z2(1:i-101))); end if i>202 Er=-cos(20*pi*t-0.35*(x2+z2)); end quiver3(x1,l,z1,l,Ei,l); hold on quiver3(x2,l,z2,l,Er,l); end axis([0,60,-10,10,0,30]); mov(i)=getframe(gcf); pause(0.01); t=t+0.001; hold off end movie2avi(mov,'垂直极化波斜入射到导体表面.vi');

下面是根据给定代码绘制垂直极化波斜入射到导体表面时的磁场分布动画的 Matlab 代码: ```matlab k = 2; omega = 2*pi; x1 = (0:0.3:30); z1 = (30:-0.3:0); x2 = (30:0.3:60); z2 = (0:0.3:30); Ei = zeros(size(x1)); Er = zeros(size(x1)); l = zeros(size(x1)); t = 0; for i = 1:300 if i <= 101 Ei(1:i) = cos(20*pi*t - 0.35*(x1(1:i)-z1(i:i))); quiver3(x1, l, z1, l, Ei, l); end if i > 101 Ei = cos(20*pi*t - 0.35*(x1-z1)); if i <= 202 Er(1:i-101) = -cos(20*pi*t - 0.35*(x2(1:i-101)+z2(1:i-101))); end if i > 202 Er = -cos(20*pi*t - 0.35*(x2+z2)); end quiver3(x1, l, z1, l, Ei, l); hold on; quiver3(x2, l, z2, l, Er, l); end axis([0, 60, -10, 10, 0, 30]); mov(i) = getframe(gcf); pause(0.01); t = t + 0.001; hold off; end movie2avi(mov, '垂直极化波斜入射到导体表面.avi'); ``` 运行上述代码,将会生成一个名为“垂直极化波斜入射到导体表面.avi”的视频文件,该文件是垂直极化波斜入射到导体表面时的磁场分布动画。

相关推荐

最新推荐

recommend-type

【车牌识别】 GUI BP神经网络车牌识别(带语音播报)【含Matlab源码 668期】.zip

Matlab领域上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
recommend-type

【作业视频】六年级第1讲--计算专项训练(2022-10-28 22-51-53).mp4

【作业视频】六年级第1讲--计算专项训练(2022-10-28 22-51-53).mp4
recommend-type

3文件需求申请单.xls

3文件需求申请单.xls
recommend-type

【脑肿瘤检测】 GUI SOM脑肿瘤检测【含Matlab源码 2322期】.zip

【脑肿瘤检测】 GUI SOM脑肿瘤检测【含Matlab源码 2322期】
recommend-type

GOGO语言基础教程、实战案例和实战项目讲解

GO语言基础教程、实战案例和实战项目讲解GO语言基础教程、实战案例和实战项目讲解GO语言基础教程、实战案例和实战项目讲解GO语言基础教程、实战案例和实战项目讲解GO语言基础教程、实战案例和实战项目讲解GO语言基础教程、实战案例和实战项目讲解GO语言基础教程、实战案例和实战项目讲解GO语言基础教程、实战案例和实战项目讲解GO语言基础教程、实战案例和实战项目讲解GO语言基础教程、实战案例和实战项目讲解GO语言基础教程、实战案例和实战项目讲解GO语言基础教程、实战案例和实战项目讲解GO语言基础教程、实战案例和实战项目讲解GO语言基础教程、实战案例和实战项目讲解GO语言基础教程、实战案例和实战项目讲解GO语言基础教程、实战案例和实战项目讲解GO语言基础教程、实战案例和实战项目讲解GO语言基础教程、实战案例和实战项目讲解GO语言基础教程、实战案例和实战项目讲解GO语言基础教程、实战案例和实战项目讲解GO语言基础教程、实战案例和实战项目讲解GO语言基础教程、实战案例和实战项目讲解GO语言基础教程、实战案例和实战项目讲解GO语言基础教程、实战案例和实战项目讲解GO语言基础教程、实战案例和实战项目讲解
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

云原生架构与soa架构区别?

云原生架构和SOA架构是两种不同的架构模式,主要有以下区别: 1. 设计理念不同: 云原生架构的设计理念是“设计为云”,注重应用程序的可移植性、可伸缩性、弹性和高可用性等特点。而SOA架构的设计理念是“面向服务”,注重实现业务逻辑的解耦和复用,提高系统的灵活性和可维护性。 2. 技术实现不同: 云原生架构的实现技术包括Docker、Kubernetes、Service Mesh等,注重容器化、自动化、微服务等技术。而SOA架构的实现技术包括Web Services、消息队列等,注重服务化、异步通信等技术。 3. 应用场景不同: 云原生架构适用于云计算环境下的应用场景,如容器化部署、微服务
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。