帮我用pytorch写一个使用生成对抗网络将红外图像和可见光图像融合的代码
时间: 2024-06-09 13:06:59 浏览: 145
使用深度学习框架(Pytorch) 的 红外和可见光图像融合_Jupyter_python代码_下载
5星 · 资源好评率100%
好的,我可以帮你写一个简单的代码。首先,你需要安装PyTorch和一些其他的库,如numpy和matplotlib。然后,你需要准备好你的红外图像和可见光图像数据。
接下来,我们需要定义一个生成器和一个判别器,分别用于生成合成图像和区分真实图像和合成图像。这里我们使用UNet作为生成器和PatchGAN作为判别器。
```python
import torch.nn as nn
# 定义UNet生成器
class UNetGenerator(nn.Module):
def __init__(self, input_channels, output_channels, num_filters):
super(UNetGenerator, self).__init__()
# 定义编码器
self.encoder1 = nn.Sequential(
nn.Conv2d(input_channels, num_filters, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(num_filters),
nn.LeakyReLU(0.2, inplace=True)
)
self.encoder2 = nn.Sequential(
nn.Conv2d(num_filters, num_filters * 2, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(num_filters * 2),
nn.LeakyReLU(0.2, inplace=True)
)
self.encoder3 = nn.Sequential(
nn.Conv2d(num_filters * 2, num_filters * 4, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(num_filters * 4),
nn.LeakyReLU(0.2, inplace=True)
)
self.encoder4 = nn.Sequential(
nn.Conv2d(num_filters * 4, num_filters * 8, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(num_filters * 8),
nn.LeakyReLU(0.2, inplace=True)
)
self.encoder5 = nn.Sequential(
nn.Conv2d(num_filters * 8, num_filters * 8, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(num_filters * 8),
nn.LeakyReLU(0.2, inplace=True)
)
self.encoder6 = nn.Sequential(
nn.Conv2d(num_filters * 8, num_filters * 8, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(num_filters * 8),
nn.LeakyReLU(0.2, inplace=True)
)
self.encoder7 = nn.Sequential(
nn.Conv2d(num_filters * 8, num_filters * 8, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(num_filters * 8),
nn.LeakyReLU(0.2, inplace=True)
)
# 定义解码器
self.decoder1 = nn.Sequential(
nn.ConvTranspose2d(num_filters * 8, num_filters * 8, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(num_filters * 8),
nn.Dropout(0.5),
nn.ReLU(inplace=True)
)
self.decoder2 = nn.Sequential(
nn.ConvTranspose2d(num_filters * 16, num_filters * 8, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(num_filters * 8),
nn.Dropout(0.5),
nn.ReLU(inplace=True)
)
self.decoder3 = nn.Sequential(
nn.ConvTranspose2d(num_filters * 16, num_filters * 8, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(num_filters * 8),
nn.Dropout(0.5),
nn.ReLU(inplace=True)
)
self.decoder4 = nn.Sequential(
nn.ConvTranspose2d(num_filters * 16, num_filters * 4, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(num_filters * 4),
nn.ReLU(inplace=True)
)
self.decoder5 = nn.Sequential(
nn.ConvTranspose2d(num_filters * 8, num_filters * 2, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(num_filters * 2),
nn.ReLU(inplace=True)
)
self.decoder6 = nn.Sequential(
nn.ConvTranspose2d(num_filters * 4, num_filters, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(num_filters),
nn.ReLU(inplace=True)
)
self.decoder7 = nn.Sequential(
nn.ConvTranspose2d(num_filters * 2, output_channels, kernel_size=4, stride=2, padding=1),
nn.Tanh()
)
def forward(self, x):
# 编码
enc1 = self.encoder1(x)
enc2 = self.encoder2(enc1)
enc3 = self.encoder3(enc2)
enc4 = self.encoder4(enc3)
enc5 = self.encoder5(enc4)
enc6 = self.encoder6(enc5)
enc7 = self.encoder7(enc6)
# 解码
dec1 = self.decoder1(enc7)
dec2 = self.decoder2(torch.cat([dec1, enc6], dim=1))
dec3 = self.decoder3(torch.cat([dec2, enc5], dim=1))
dec4 = self.decoder4(torch.cat([dec3, enc4], dim=1))
dec5 = self.decoder5(torch.cat([dec4, enc3], dim=1))
dec6 = self.decoder6(torch.cat([dec5, enc2], dim=1))
dec7 = self.decoder7(torch.cat([dec6, enc1], dim=1))
return dec7
# 定义PatchGAN判别器
class PatchDiscriminator(nn.Module):
def __init__(self, input_channels, num_filters):
super(PatchDiscriminator, self).__init__()
self.conv1 = nn.Sequential(
nn.Conv2d(input_channels, num_filters, kernel_size=4, stride=2, padding=1),
nn.LeakyReLU(0.2, inplace=True)
)
self.conv2 = nn.Sequential(
nn.Conv2d(num_filters, num_filters * 2, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(num_filters * 2),
nn.LeakyReLU(0.2, inplace=True)
)
self.conv3 = nn.Sequential(
nn.Conv2d(num_filters * 2, num_filters * 4, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(num_filters * 4),
nn.LeakyReLU(0.2, inplace=True)
)
self.conv4 = nn.Sequential(
nn.Conv2d(num_filters * 4, num_filters * 8, kernel_size=4, stride=1, padding=1),
nn.BatchNorm2d(num_filters * 8),
nn.LeakyReLU(0.2, inplace=True)
)
self.conv5 = nn.Conv2d(num_filters * 8, 1, kernel_size=4, stride=1, padding=1)
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = self.conv3(x)
x = self.conv4(x)
x = self.conv5(x)
return x
```
接下来,我们需要定义训练过程。我们使用Adam优化器和BCELoss损失函数。在每个epoch中,我们先将真实的红外图像和可见光图像分别输入到生成器中,得到两个合成图像。然后,我们将真实的红外图像和可见光图像与生成的合成图像分别输入到判别器中,计算判别器的损失。最后,我们更新生成器和判别器的参数。
```python
import torch.optim as optim
from torchvision.utils import save_image
# 定义训练过程
def train(generator, discriminator, dataloader, num_epochs, device):
criterion = nn.BCEWithLogitsLoss()
real_label = 1
fake_label = 0
optimizer_G = optim.Adam(generator.parameters(), lr=0.0002, betas=(0.5, 0.999))
optimizer_D = optim.Adam(discriminator.parameters(), lr=0.0002, betas=(0.5, 0.999))
for epoch in range(num_epochs):
for i, (ir, vis) in enumerate(dataloader):
ir = ir.to(device)
vis = vis.to(device)
# 训练判别器
optimizer_D.zero_grad()
# 真实红外图像和可见光图像
label = torch.full((ir.size(0),), real_label, device=device)
output = discriminator(ir)
errD_real = criterion(output, label)
D_x = output.mean().item()
label.fill_(real_label)
output = discriminator(vis)
errD_real += criterion(output, label)
D_x += output.mean().item()
# 生成合成图像
fake = generator(ir)
# 假的红外图像和可见光图像
label.fill_(fake_label)
output = discriminator(fake.detach())
errD_fake = criterion(output, label)
D_G_z1 = output.mean().item()
# 计算总判别器损失
errD = (errD_real + errD_fake) / 2
errD.backward()
optimizer_D.step()
# 训练生成器
optimizer_G.zero_grad()
# 生成合成图像并输入到判别器中
label.fill_(real_label)
output = discriminator(fake)
errG = criterion(output, label)
# 计算总生成器损失
errG.backward()
optimizer_G.step()
if i % 100 == 0:
print('[%d/%d][%d/%d]\tLoss_D: %.4f\tLoss_G: %.4f\tD(x): %.4f\tD(G(z)): %.4f / %.4f'
% (epoch, num_epochs, i, len(dataloader),
errD.item(), errG.item(), D_x, D_G_z1, output.mean().item()))
# 保存生成的合成图像
with torch.no_grad():
fake = generator(ir)
save_image(fake.detach(), 'output-%d.png' % (epoch+1), normalize=True)
# 保存模型
torch.save(generator.state_dict(), 'generator.pth')
torch.save(discriminator.state_dict(), 'discriminator.pth')
```
最后,我们可以使用以下代码来加载数据、定义模型、并开始训练:
```python
import torch.utils.data as data
import torchvision.transforms as transforms
from PIL import Image
# 定义数据集
class ImageDataset(data.Dataset):
def __init__(self, ir_dir, vis_dir):
self.ir_dir = ir_dir
self.vis_dir = vis_dir
def __getitem__(self, index):
ir_path = self.ir_dir + '/' + str(index+1) + '.png'
vis_path = self.vis_dir + '/' + str(index+1) + '.png'
ir = Image.open(ir_path).convert('RGB')
vis = Image.open(vis_path).convert('RGB')
transform = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
ir = transform(ir)
vis = transform(vis)
return ir, vis
def __len__(self):
return 1000
# 加载数据
ir_dir = 'path/to/ir/images'
vis_dir = 'path/to/vis/images'
dataset = ImageDataset(ir_dir, vis_dir)
dataloader = data.DataLoader(dataset, batch_size=4, shuffle=True)
# 定义模型
generator = UNetGenerator(input_channels=3, output_channels=3, num_filters=64)
discriminator = PatchDiscriminator(input_channels=3, num_filters=64)
# 将模型移动到GPU
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
generator.to(device)
discriminator.to(device)
# 训练模型
train(generator, discriminator, dataloader, num_epochs=200, device=device)
```
这个代码只是一个简单的示例,你可能需要根据你的实际情况进行修改。
阅读全文