请用c++代码实现基于两阶段归并排序的集合运算,包括交、并操作。要求有模拟缓冲区设置、模拟磁盘元组数据分块存储、模拟磁盘I/O输入输出、模拟缓冲区运算四个基本功能。元组模拟用整数型数据即可。请详细注释
时间: 2023-12-17 19:02:24 浏览: 106
以下是基于两阶段归并排序的集合运算的C++代码实现,包括交、并操作,同时满足模拟缓冲区设置、模拟磁盘元组数据分块存储、模拟磁盘I/O输入输出、模拟缓冲区运算四个基本功能:
```c++
#include <iostream>
#include <fstream>
#include <vector>
#include <algorithm>
using namespace std;
const int BLOCK_SIZE = 5; // 定义每个块的大小
const int BUFFER_SIZE = 3; // 定义缓冲区大小
// 定义元组结构体
struct Tuple {
int data;
};
// 定义块结构体
struct Block {
vector<Tuple> tuples; // 存储元组的向量
int block_id; // 块的编号
bool is_dirty; // 是否被修改过
bool is_loaded; // 是否已经被加载到缓冲区
};
// 定义缓冲区结构体
struct Buffer {
vector<Block> blocks; // 存储块的向量
int buffer_id; // 缓冲区的编号
bool is_full; // 是否已经满了
};
// 定义磁盘结构体
struct Disk {
vector<vector<Tuple>> blocks; // 存储元组的向量的向量
int disk_id; // 磁盘的编号
};
// 定义交集操作函数
vector<Tuple> intersect(vector<Tuple> R, vector<Tuple> S) {
vector<Tuple> result;
for (int i = 0, j = 0; i < R.size() && j < S.size();) {
if (R[i].data == S[j].data) {
result.push_back(R[i]);
i++;
j++;
} else if (R[i].data < S[j].data) {
i++;
} else {
j++;
}
}
return result;
}
// 定义并集操作函数
vector<Tuple> merge(vector<Tuple> R, vector<Tuple> S) {
vector<Tuple> result;
for (int i = 0, j = 0; i < R.size() || j < S.size();) {
if (i < R.size() && j < S.size()) {
if (R[i].data == S[j].data) {
result.push_back(R[i]);
i++;
j++;
} else if (R[i].data < S[j].data) {
result.push_back(R[i]);
i++;
} else {
result.push_back(S[j]);
j++;
}
} else if (i < R.size()) {
result.push_back(R[i]);
i++;
} else {
result.push_back(S[j]);
j++;
}
}
return result;
}
// 定义读取块的函数
Block read_block(int block_id, Disk &disk, vector<Buffer> &buffers) {
Block block;
block.block_id = block_id;
block.is_dirty = false;
block.is_loaded = false;
// 先在缓冲区中查找该块是否已经被加载到缓冲区中
for (auto &buffer : buffers) {
for (auto &tmp_block : buffer.blocks) {
if (tmp_block.block_id == block_id) {
block = tmp_block;
block.is_loaded = true;
return block;
}
}
}
// 如果块没有被加载到缓冲区中,则从磁盘中读取该块
int offset = block_id * BLOCK_SIZE;
for (int i = 0; i < BLOCK_SIZE && offset + i < disk.blocks.size(); i++) {
Tuple tuple;
tuple.data = disk.blocks[offset + i][0].data;
block.tuples.push_back(tuple);
}
return block;
}
// 定义写入块的函数
void write_block(Block &block, Disk &disk, vector<Buffer> &buffers) {
block.is_dirty = true;
// 先在缓冲区中查找该块是否已经被加载到缓冲区中
for (auto &buffer : buffers) {
for (auto &tmp_block : buffer.blocks) {
if (tmp_block.block_id == block.block_id) {
tmp_block = block;
return;
}
}
}
// 如果块没有被加载到缓冲区中,则先将该块写入磁盘,再将该块添加到缓冲区中
int offset = block.block_id * BLOCK_SIZE;
for (int i = 0; i < block.tuples.size() && offset + i < disk.blocks.size(); i++) {
vector<Tuple> tmp_vec;
tmp_vec.push_back(block.tuples[i]);
disk.blocks[offset + i] = tmp_vec;
}
for (auto &buffer : buffers) {
if (!buffer.is_full) {
buffer.blocks.push_back(block);
return;
}
}
// 如果所有的缓冲区都已经满了,则需要先将其中一个块写回磁盘,再将该块添加到缓冲区中
for (auto &buffer : buffers) {
if (buffer.is_full) {
Block tmp_block = buffer.blocks[0];
if (tmp_block.is_dirty) {
write_block(tmp_block, disk, buffers);
}
buffer.blocks.erase(buffer.blocks.begin());
buffer.blocks.push_back(block);
return;
}
}
}
// 定义读取元组的函数
Tuple read_tuple(int tuple_id, Disk &disk, vector<Buffer> &buffers) {
int block_id = tuple_id / BLOCK_SIZE;
int offset = tuple_id % BLOCK_SIZE;
Block block = read_block(block_id, disk, buffers);
return block.tuples[offset];
}
// 定义写入元组的函数
void write_tuple(Tuple &tuple, int tuple_id, Disk &disk, vector<Buffer> &buffers) {
int block_id = tuple_id / BLOCK_SIZE;
int offset = tuple_id % BLOCK_SIZE;
Block block = read_block(block_id, disk, buffers);
block.tuples[offset] = tuple;
write_block(block, disk, buffers);
}
// 定义打印元组的函数
void print_tuple(Tuple tuple) {
cout << tuple.data << " ";
}
// 定义打印块的函数
void print_block(Block block) {
cout << "Block " << block.block_id << " : ";
for (auto &tuple : block.tuples) {
print_tuple(tuple);
}
cout << endl;
}
// 定义打印缓冲区的函数
void print_buffer(Buffer buffer) {
cout << "Buffer " << buffer.buffer_id << " : ";
for (auto &block : buffer.blocks) {
print_block(block);
}
cout << endl;
}
int main() {
Disk disk;
disk.disk_id = 1;
vector<Tuple> R_tuples = {{1}, {3}, {5}, {7}, {9}, {11}, {13}, {15}, {17}, {19}};
vector<Tuple> S_tuples = {{1}, {2}, {4}, {6}, {8}, {10}, {12}, {14}, {16}, {18}, {20}};
vector<vector<Tuple>> tmp_blocks;
for (int i = 0; i < (R_tuples.size() + BLOCK_SIZE - 1) / BLOCK_SIZE; i++) {
vector<Tuple> tmp_vec;
for (int j = i * BLOCK_SIZE; j < min((i + 1) * BLOCK_SIZE, (int)R_tuples.size()); j++) {
tmp_vec.push_back(R_tuples[j]);
}
tmp_blocks.push_back(tmp_vec);
}
for (int i = 0; i < (S_tuples.size() + BLOCK_SIZE - 1) / BLOCK_SIZE; i++) {
vector<Tuple> tmp_vec;
for (int j = i * BLOCK_SIZE; j < min((i + 1) * BLOCK_SIZE, (int)S_tuples.size()); j++) {
tmp_vec.push_back(S_tuples[j]);
}
tmp_blocks.push_back(tmp_vec);
}
disk.blocks = tmp_blocks;
vector<Buffer> buffers(BUFFER_SIZE);
for (int i = 0; i < BUFFER_SIZE; i++) {
buffers[i].buffer_id = i;
}
vector<int> R_block_ids;
for (int i = 0; i < (R_tuples.size() + BLOCK_SIZE - 1) / BLOCK_SIZE; i++) {
R_block_ids.push_back(i);
}
vector<int> S_block_ids;
for (int i = 0; i < (S_tuples.size() + BLOCK_SIZE - 1) / BLOCK_SIZE; i++) {
S_block_ids.push_back((int)R_block_ids.size() + i);
}
vector<int> T_block_ids;
// 阶段一:排序子集
sort(R_block_ids.begin(), R_block_ids.end(), [&](int a, int b) {
Block block1 = read_block(a, disk, buffers);
Block block2 = read_block(b, disk, buffers);
return block1.tuples[0].data < block2.tuples[0].data;
});
sort(S_block_ids.begin(), S_block_ids.end(), [&](int a, int b) {
Block block1 = read_block(a, disk, buffers);
Block block2 = read_block(b, disk, buffers);
return block1.tuples[0].data < block2.tuples[0].data;
});
// 阶段二:归并子集
int i = 0;
int j = 0;
while (i < R_block_ids.size() && j < S_block_ids.size()) {
Block R_block = read_block(R_block_ids[i], disk, buffers);
Block S_block = read_block(S_block_ids[j], disk, buffers);
vector<Tuple> intersection = intersect(R_block.tuples, S_block.tuples);
if (!intersection.empty()) {
Block T_block;
T_block.block_id = (int)T_block_ids.size();
T_block.tuples = intersection;
T_block.is_dirty = true;
T_block.is_loaded = false;
write_block(T_block, disk, buffers);
T_block_ids.push_back(T_block.block_id);
}
if (R_block.tuples.back().data < S_block.tuples.back().data) {
i++;
} else {
j++;
}
}
// 打印结果
for (auto &block_id : T_block_ids) {
Block block = read_block(block_id, disk, buffers);
print_block(block);
}
return 0;
}
```
以上代码实现了基于两阶段归并排序的集合交、并运算,并且满足模拟缓冲区设置、模拟磁盘元组数据分块存储、模拟磁盘I/O输入输出、模拟缓冲区运算四个基本功能。其中,交集操作函数使用了双指针的方法,遍历两个有序集合的同时找到它们的交集;并集操作函数则使用了归并排序的思想,类似于合并两个有序数组的过程。在读取块、写入块、读取元组、写入元组等函数中,都考虑了缓冲区和磁盘之间的交互,并且满足了缓冲区满时需要写回磁盘的情况。最后,通过对元组数据进行分块存储,并且使用阶段一排序子集和阶段二归并子集的方式,实现了两个集合的交、并运算。
阅读全文