将上面我给出的两个代码用一个模块代替并写出仿真代码
时间: 2024-03-14 15:46:40 浏览: 71
好的,我们可以使用Python中的`transformers`库来代替上述两个代码,并使用Python的`input()`函数来模拟与用户的对话。以下是仿真代码:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
# Define function to generate response
def generate_response(prompt):
# Encode user input and generate response
input_ids = tokenizer.encode(prompt + tokenizer.eos_token, return_tensors="pt")
response = model.generate(input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id)
# Decode response and return
return tokenizer.decode(response.squeeze(), skip_special_tokens=True)
# Start conversation
print("Bot: Hi there! I'm a chatbot. What can I help you with today?")
while True:
# Get user input
prompt = input("You: ")
# Generate response
response = generate_response(prompt)
# Print response
print("Bot:", response)
```
此代码使用Microsoft开发的DialoGPT-medium模型作为聊天机器人,并使用与上述代码相同的输入/输出格式。使用`transformers`库可以使代码更简洁,并且我们可以轻松地更改模型和tokenizer以尝试不同的聊天机器人。
阅读全文