import cv2 img = cv2.imread('f.jpg') face_cascade = cv2.CascadeClassifier(r'haarcascade_frontalface_default.xml') gray= cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) faces = face_cascade.detectMultiScale(gray,scaleFactor = 1.15,minNeighbors = 4,minSize=(5,5)) prin
时间: 2023-06-16 17:05:42 浏览: 160
人脸识别需要的haarcascade_frontalface_default.xml文件
5星 · 资源好评率100%
t(faces)
这段代码是使用 OpenCV 库进行人脸检测的代码,步骤如下:
1. 导入 cv2 库
2. 读取一张图片,将其存储在变量 img 中
3. 使用 Haar 级联分类器,即 face_cascade = cv2.CascadeClassifier(r'haarcascade_frontalface_default.xml') ,加载预训练好的人脸检测模型
4. 将图片转换为灰度图像,因为灰度图像处理起来会更快一些,即 gray= cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
5. 使用 detectMultiScale() 函数进行人脸检测,返回值为包含人脸坐标的矩形框数组,其中 scaleFactor、minNeighbors 和 minSize 分别表示缩放因子、最小邻居数和最小检测尺寸,即 faces = face_cascade.detectMultiScale(gray,scaleFactor = 1.15,minNeighbors = 4,minSize=(5,5))
6. 最后输出检测到的人脸坐标。
阅读全文