mapper_options = pycolmap.IncrementalMapperOptions() mapper_options.extract_colors = False mapper_options.min_model_size = 3

时间: 2023-07-14 16:12:19 浏览: 234
这段代码是使用pycolmap库中的IncrementalMapperOptions类创建一个对象mapper_options。其中,extract_colors属性被设置为False,表示在执行增量式重建时不提取颜色信息。min_model_size属性被设置为3,表示只有当模型中至少有3个点时才进行增量式重建。这些选项可以根据需要进行修改。
相关问题

详细解释一下这段代码,每一句都要进行注解:tgt = f'/kaggle/working/{dataset}-{scene}' # Generate a simple reconstruction with SIFT (https://en.wikipedia.org/wiki/Scale-invariant_feature_transform). if not os.path.isdir(tgt): os.makedirs(f'{tgt}/bundle') os.system(f'cp -r {src}/images {tgt}/images') database_path = f'{tgt}/database.db' sift_opt = pycolmap.SiftExtractionOptions() sift_opt.max_image_size = 1500 # Extract features at low resolution could significantly reduce the overall accuracy sift_opt.max_num_features = 8192 # Generally more features is better, even if behond a certain number it doesn't help incresing accuracy sift_opt.upright = True # rotation invariance device = 'cpu' t = time() pycolmap.extract_features(database_path, f'{tgt}/images', sift_options=sift_opt, verbose=True) print(len(os.listdir(f'{tgt}/images'))) print('TIMINGS --- Feature extraction', time() - t) t = time() matching_opt = pycolmap.SiftMatchingOptions() matching_opt.max_ratio = 0.85 # Ratio threshold significantly influence the performance of the feature extraction method. It varies depending on the local feature but also on the image type # matching_opt.max_distance = 0.7 matching_opt.cross_check = True matching_opt.max_error = 1.0 # The ransac error threshold could help to exclude less accurate tie points pycolmap.match_exhaustive(database_path, sift_options=matching_opt, device=device, verbose=True) print('TIMINGS --- Feature matching', time() - t) t = time() mapper_options = pycolmap.IncrementalMapperOptions() mapper_options.extract_colors = False mapper_options.min_model_size = 3 # Sometimes you want to impose the first image pair for initialize the incremental reconstruction mapper_options.init_image_id1 = -1 mapper_options.init_image_id2 = -1 # Choose which interior will be refined during BA mapper_options.ba_refine_focal_length = True mapper_options.ba_refine_principal_point = True mapper_options.ba_refine_extra_params = True maps = pycolmap.incremental_mapping(database_path=database_path, image_path=f'{tgt}/images', output_path=f'{tgt}/bundle', options=mapper_options) print('TIMINGS --- Mapping', time() - t)

这段代码主要是使用 PyCOLMAP 库实现对图像的特征提取、特征匹配和增量式三维重建。具体解释如下: ```tgt = f'/kaggle/working/{dataset}-{scene}'``` 定义了一个字符串变量 tgt,表示输出路径。 ```if not os.path.isdir(tgt):``` 如果输出路径不存在,则创建该路径。 ```os.makedirs(f'{tgt}/bundle')``` 在输出路径下创建子目录 bundle。 ```os.system(f'cp -r {src}/images {tgt}/images')``` 将源目录 src 中的 images 目录复制到输出路径下的 images 目录中。 ```database_path = f'{tgt}/database.db'``` 定义一个字符串变量 database_path,表示 PyCOLMAP 库中使用的数据库文件路径。 ```sift_opt = pycolmap.SiftExtractionOptions()``` 创建一个 SIFT 特征提取选项对象。 ```sift_opt.max_image_size = 1500``` 设置 SIFT 特征提取选项对象的最大图像尺寸为 1500×1500 像素。 ```sift_opt.max_num_features = 8192``` 设置 SIFT 特征提取选项对象的最大特征点数为 8192 个。 ```sift_opt.upright = True``` 设置 SIFT 特征提取选项对象的旋转不变性为 True,即不考虑图像旋转。 ```device = 'cpu'``` 定义一个字符串变量 device,表示计算设备类型。 ```pycolmap.extract_features(database_path, f'{tgt}/images', sift_options=sift_opt, verbose=True)``` 调用 PyCOLMAP 库中的 extract_features 函数,对输出路径下的图像进行 SIFT 特征提取,并将特征保存到数据库文件中。 ```print(len(os.listdir(f'{tgt}/images')))``` 输出输出路径下的图像数量。 ```print('TIMINGS --- Feature extraction', time() - t)``` 输出特征提取所花费的时间。 ```matching_opt = pycolmap.SiftMatchingOptions()``` 创建一个 SIFT 特征匹配选项对象。 ```matching_opt.max_ratio = 0.85``` 设置 SIFT 特征匹配选项对象的最大匹配比率为 0.85。 ```matching_opt.max_distance = 0.7``` 设置 SIFT 特征匹配选项对象的最大匹配距离为 0.7。 ```matching_opt.cross_check = True``` 设置 SIFT 特征匹配选项对象的交叉匹配为 True,即同时匹配两幅图像。 ```matching_opt.max_error = 1.0``` 设置 SIFT 特征匹配选项对象的最大误差为 1.0。 ```pycolmap.match_exhaustive(database_path, sift_options=matching_opt, device=device, verbose=True)``` 调用 PyCOLMAP 库中的 match_exhaustive 函数,对数据库文件中的特征进行 SIFT 特征匹配,并将匹配结果保存到数据库文件中。 ```print('TIMINGS --- Feature matching', time() - t)``` 输出特征匹配所花费的时间。 ```mapper_options = pycolmap.IncrementalMapperOptions()``` 创建一个增量式三维重建选项对象。 ```mapper_options.extract_colors = False``` 设置增量式三维重建选项对象的颜色提取为 False,即不提取图像颜色信息。 ```mapper_options.min_model_size = 3``` 设置增量式三维重建选项对象的最小模型大小为 3。 ```mapper_options.init_image_id1 = -1``` 设置增量式三维重建选项对象的第一张图像的 ID 为 -1,表示不指定。 ```mapper_options.init_image_id2 = -1``` 设置增量式三维重建选项对象的第二张图像的 ID 为 -1,表示不指定。 ```mapper_options.ba_refine_focal_length = True``` 设置增量式三维重建选项对象的相机内参的优化为 True。 ```mapper_options.ba_refine_principal_point = True``` 设置增量式三维重建选项对象的相机主点的优化为 True。 ```mapper_options.ba_refine_extra_params = True``` 设置增量式三维重建选项对象的额外参数的优化为 True。 ```maps = pycolmap.incremental_mapping(database_path=database_path, image_path=f'{tgt}/images', output_path=f'{tgt}/bundle', options=mapper_options)``` 调用 PyCOLMAP 库中的 incremental_mapping 函数,对数据库文件中的匹配结果进行增量式三维重建,并将重建结果保存到输出路径下的 bundle 目录中。 ```print('TIMINGS --- Mapping', time() - t)``` 输出增量式三维重建所花费的时间。

详细解释一下这段代码,每一句都要进行注解:t=time() # By default colmap does not generate a reconstruction if less than 10 images are registered. Lower it to 3. mapper_options = pycolmap.IncrementalMapperOptions() mapper_options.min_model_size = 3 os.makedirs(output_path, exist_ok=True) maps = pycolmap.incremental_mapping(database_path=database_path, image_path=img_dir, output_path=output_path, options=mapper_options) print(maps) #clear_output(wait=False) t=time() - t timings['Reconstruction'].append(t) print(f'Reconstruction done in {t:.4f} sec') imgs_registered = 0 best_idx = None print ("Looking for the best reconstruction") if isinstance(maps, dict): for idx1, rec in maps.items(): print (idx1, rec.summary()) if len(rec.images) > imgs_registered: imgs_registered = len(rec.images) best_idx = idx1 if best_idx is not None: print (maps[best_idx].summary()) for k, im in maps[best_idx].images.items(): key1 = f'{dataset}/{scene}/images/{im.name}' out_results[dataset][scene][key1] = {} out_results[dataset][scene][key1]["R"] = deepcopy(im.rotmat()) out_results[dataset][scene][key1]["t"] = deepcopy(np.array(im.tvec)) print(f'Registered: {dataset} / {scene} -> {len(out_results[dataset][scene])} images') print(f'Total: {dataset} / {scene} -> {len(data_dict[dataset][scene])} images') create_submission(out_results, data_dict) gc.collect() except: pass

这段代码主要是进行图像重建的过程,下面是每一句话的注释: - t=time():记录当前时间,用于计算重建时间。 - By default colmap does not generate a reconstruction if less than 10 images are registered. Lower it to 3.:默认情况下,如果注册的图像少于10张,则colmap不会生成重建。将其降低到3。 - mapper_options = pycolmap.IncrementalMapperOptions():创建 pycolmap.IncrementalMapperOptions() 类的对象 mapper_options。 - mapper_options.min_model_size = 3:设置 mapper_options 的最小模型尺寸为 3。 - os.makedirs(output_path, exist_ok=True):使用 makedirs() 函数在指定路径 output_path 创建文件夹,如果文件夹已经存在则不会报错。 - maps = pycolmap.incremental_mapping(database_path=database_path, image_path=img_dir, output_path=output_path, options=mapper_options):使用 pycolmap.incremental_mapping() 函数进行增量式的图像重建,返回重建结果 maps。 - print(maps):打印 maps,用于调试和查看重建结果。 - #clear_output(wait=False):注释掉的语句,可能是用于清除输出缓存的,但是被注释掉了。 - t=time() - t:计算重建时间。 - timings['Reconstruction'].append(t):将重建时间 t 添加到 timings 字典中的 Reconstruction 键对应的列表中。 - print(f'Reconstruction done in {t:.4f} sec'):输出重建时间,保留小数点后四位。 - imgs_registered = 0:记录已经注册的图像数量。 - best_idx = None:初始化最佳重建的索引为 None。 - print ("Looking for the best reconstruction"):打印提示信息,表示正在寻找最佳重建。 - if isinstance(maps, dict)::如果 maps 是字典类型。 - for idx1, rec in maps.items()::遍历 maps 字典中的每一项,其中 idx1 是键,rec 是值。 - print (idx1, rec.summary()):打印 idx1 和 rec 的摘要信息。 - if len(rec.images) > imgs_registered::如果 rec 中注册的图像数量大于已经注册的图像数量。 - imgs_registered = len(rec.images):将注册的图像数量更新为 rec 中注册的图像数量。 - best_idx = idx1:更新最佳重建的索引为当前的 idx1。 - if best_idx is not None::如果存在最佳重建的索引。 - print (maps[best_idx].summary()):打印最佳重建的摘要信息。 - for k, im in maps[best_idx].images.items()::遍历最佳重建中的每一个图像。 - key1 = f'{dataset}/{scene}/images/{im.name}':构造输出结果的键值,格式为 dataset/scene/images/im.name。 - out_results[dataset][scene][key1] = {}:在输出结果字典中为当前图像的键值创建一个空字典。 - out_results[dataset][scene][key1]["R"] = deepcopy(im.rotmat()):将当前图像的旋转矩阵 R 深度复制到输出结果字典中。 - out_results[dataset][scene][key1]["t"] = deepcopy(np.array(im.tvec)):将当前图像的位移矩阵 t 深度复制到输出结果字典中。 - print(f'Registered: {dataset} / {scene} -> {len(out_results[dataset][scene])} images'):输出已经注册的图像数量。 - print(f'Total: {dataset} / {scene} -> {len(data_dict[dataset][scene])} images'):输出总共需要注册的图像数量。 - create_submission(out_results, data_dict):调用 create_submission() 函数生成提交结果。 - gc.collect():手动调用 Python 的垃圾回收机制,释放内存。
阅读全文

相关推荐

最新推荐

recommend-type

LinkageMapper_ 使用指南.docx

"LinkageMapper 使用指南" LinkageMapper 是一款GIS工具,主要用于支撑区域野生动物栖息地连通性分析。它由几个 Python 脚本组成,打包为 ArcGIS 工具箱,可以自动绘制野生动物栖息地连接走廊。...
recommend-type

精细金属掩模板(FMM)行业研究报告 显示技术核心部件FMM材料产业分析与市场应用

精细金属掩模板(FMM)作为OLED蒸镀工艺中的核心消耗部件,负责沉积RGB有机物质形成像素。材料由Frame、Cover等五部分组成,需满足特定热膨胀性能。制作工艺包括蚀刻、电铸等,影响FMM性能。适用于显示技术研究人员、产业分析师,旨在提供FMM材料技术发展、市场规模及产业链结构的深入解析。
recommend-type

Angular实现MarcHayek简历展示应用教程

资源摘要信息:"MarcHayek-CV:我的简历的Angular应用" Angular 应用是一个基于Angular框架开发的前端应用程序。Angular是一个由谷歌(Google)维护和开发的开源前端框架,它使用TypeScript作为主要编程语言,并且是单页面应用程序(SPA)的优秀解决方案。该应用不仅展示了Marc Hayek的个人简历,而且还介绍了如何在本地环境中设置和配置该Angular项目。 知识点详细说明: 1. Angular 应用程序设置: - Angular 应用程序通常依赖于Node.js运行环境,因此首先需要全局安装Node.js包管理器npm。 - 在本案例中,通过npm安装了两个开发工具:bower和gulp。bower是一个前端包管理器,用于管理项目依赖,而gulp则是一个自动化构建工具,用于处理如压缩、编译、单元测试等任务。 2. 本地环境安装步骤: - 安装命令`npm install -g bower`和`npm install --global gulp`用来全局安装这两个工具。 - 使用git命令克隆远程仓库到本地服务器。支持使用SSH方式(`***:marc-hayek/MarcHayek-CV.git`)和HTTPS方式(需要替换为具体用户名,如`git clone ***`)。 3. 配置流程: - 在server文件夹中的config.json文件里,需要添加用户的电子邮件和密码,以便该应用能够通过内置的联系功能发送信息给Marc Hayek。 - 如果想要在本地服务器上运行该应用程序,则需要根据不同的环境配置(开发环境或生产环境)修改config.json文件中的“baseURL”选项。具体而言,开发环境下通常设置为“../build”,生产环境下设置为“../bin”。 4. 使用的技术栈: - JavaScript:虽然没有直接提到,但是由于Angular框架主要是用JavaScript来编写的,因此这是必须理解的核心技术之一。 - TypeScript:Angular使用TypeScript作为开发语言,它是JavaScript的一个超集,添加了静态类型检查等功能。 - Node.js和npm:用于运行JavaScript代码以及管理JavaScript项目的依赖。 - Git:版本控制系统,用于代码的版本管理及协作开发。 5. 关于项目结构: - 该应用的项目文件夹结构可能遵循Angular CLI的典型结构,包含了如下目录:app(存放应用组件)、assets(存放静态资源如图片、样式表等)、environments(存放环境配置文件)、server(存放服务器配置文件如上文的config.json)等。 6. 开发和构建流程: - 开发时,可能会使用Angular CLI来快速生成组件、服务等,并利用热重载等特性进行实时开发。 - 构建应用时,通过gulp等构建工具可以进行代码压缩、ES6转译、单元测试等自动化任务,以确保代码的质量和性能优化。 7. 部署: - 项目最终需要部署到服务器上,配置文件中的“baseURL”选项指明了服务器上的资源基础路径。 8. 关于Git仓库: - 压缩包子文件的名称为MarcHayek-CV-master,表明这是一个使用Git版本控制的仓库,且存在一个名为master的分支,这通常是项目的主分支。 以上知识点围绕Angular应用“MarcHayek-CV:我的简历”的创建、配置、开发、构建及部署流程进行了详细说明,涉及了前端开发中常见的工具、技术及工作流。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

深入剖析:内存溢出背后的原因、预防及应急策略(专家版)

![深入剖析:内存溢出背后的原因、预防及应急策略(专家版)](https://d8it4huxumps7.cloudfront.net/uploads/images/65e82a01a4196_dangling_pointer_in_c_2.jpg?d=2000x2000) 参考资源链接:[Net 内存溢出(System.OutOfMemoryException)的常见情况和处理方式总结](https://wenku.csdn.net/doc/6412b784be7fbd1778d4a95f?spm=1055.2635.3001.10343) # 1. 内存溢出的概念及影响 内存溢出,又称
recommend-type

Java中如何对年月日时分秒的日期字符串作如下处理:如何日期分钟介于两个相连的半点之间,就将分钟数调整为前半点

在Java中,你可以使用`java.time`包中的类来处理日期和时间,包括格式化和调整。下面是一个示例,展示了如何根据给定的日期字符串(假设格式为"yyyy-MM-dd HH:mm:ss")进行这样的处理: ```java import java.text.SimpleDateFormat; import java.time.LocalDateTime; import java.time.ZoneId; import java.time.ZonedDateTime; public class Main { public static void main(String[] args
recommend-type

Crossbow Spot最新更新 - 获取Chrome扩展新闻

资源摘要信息:"Crossbow Spot - Latest News Update-crx插件" 该信息是关于一款特定的Google Chrome浏览器扩展程序,名为"Crossbow Spot - Latest News Update"。此插件的目的是帮助用户第一时间获取最新的Crossbow Spot相关信息,它作为一个RSS阅读器,自动聚合并展示Crossbow Spot的最新新闻内容。 从描述中可以提取以下关键知识点: 1. 功能概述: - 扩展程序能让用户领先一步了解Crossbow Spot的最新消息,提供实时更新。 - 它支持自动更新功能,用户不必手动点击即可刷新获取最新资讯。 - 用户界面设计灵活,具有美观的新闻小部件,使得信息的展现既实用又吸引人。 2. 用户体验: - 桌面通知功能,通过Chrome的新通知中心托盘进行实时推送,确保用户不会错过任何重要新闻。 - 提供一个便捷的方式来保持与Crossbow Spot最新动态的同步。 3. 语言支持: - 该插件目前仅支持英语,但开发者已经计划在未来的版本中添加对其他语言的支持。 4. 技术实现: - 此扩展程序是基于RSS Feed实现的,即从Crossbow Spot的RSS源中提取最新新闻。 - 扩展程序利用了Chrome的通知API,以及RSS Feed处理机制来实现新闻的即时推送和展示。 5. 版权与免责声明: - 所有的新闻内容都是通过RSS Feed聚合而来,扩展程序本身不提供原创内容。 - 用户在使用插件时应遵守相关的版权和隐私政策。 6. 安装与使用: - 用户需要从Chrome网上应用店下载.crx格式的插件文件,即Crossbow_Spot_-_Latest_News_Update.crx。 - 安装后,插件会自动运行,并且用户可以对其进行配置以满足个人偏好。 从以上信息可以看出,该扩展程序为那些对Crossbow Spot感兴趣或需要密切跟进其更新的用户提供了一个便捷的解决方案,通过集成RSS源和Chrome通知机制,使得信息获取变得更加高效和及时。这对于需要实时更新信息的用户而言,具有一定的实用价值。同时,插件的未来发展计划中包括了多语言支持,这将使得更多的用户能够使用并从中受益。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【Java内存管理终极指南】:一次性解决内存溢出、泄漏和性能瓶颈

![【Java内存管理终极指南】:一次性解决内存溢出、泄漏和性能瓶颈](https://community.cloudera.com/t5/image/serverpage/image-id/31614iEBC942A7C6D4A6A1/image-size/large?v=v2&px=999) 参考资源链接:[Net 内存溢出(System.OutOfMemoryException)的常见情况和处理方式总结](https://wenku.csdn.net/doc/6412b784be7fbd1778d4a95f?spm=1055.2635.3001.10343) # 1. Java内存模型
recommend-type

c 语言return用法

在C语言中,`return`关键字用于结束函数的执行并返回一个值给函数调用者(如果函数声明了返回类型)。它的基本语法如下: ```c return_type function_name(parameters) { // 函数体内的代码 if (条件) { return value; // 可选的,直接返回一个特定值 } else { // 可能的计算后返回 result = some_computation(); return result; } } ``` 当`return`被执行时,控制权会立即从当前函数转移