matlab读入人脸数据集代码
时间: 2023-07-09 07:06:27 浏览: 140
以下是使用MATLAB读取人脸数据集的示例代码:
```matlab
% 设置人脸数据集文件夹路径
data_folder = 'path/to/face/dataset';
% 读取人脸数据集
face_data = imageDatastore(data_folder, 'IncludeSubfolders', true, 'LabelSource', 'foldernames');
% 显示一些样本图像
figure;
perm = randperm(numel(face_data.Files), 20);
for i = 1:20
subplot(4, 5, i);
imshow(readimage(face_data, perm(i)));
end
```
在这个示例中,我们首先设置了人脸数据集的文件夹路径,然后使用`imageDatastore`函数读取数据集。`'IncludeSubfolders', true`选项表示应该遍历所有子文件夹来查找图像,`'LabelSource', 'foldernames'`选项表示应该使用文件夹名称作为标签。最后,我们使用`readimage`函数读取并显示一些随机选择的样本图像。
相关问题
matlab读入ORL人脸数据集并利用kl变换实现人脸判断代码
以下是利用KL变换实现人脸判断的MATLAB代码,其中使用了ORL人脸数据集:
```matlab
%% 读取ORL人脸数据集
clear all;
close all;
clc;
% 数据集路径
data_path = './orl_faces';
% 读取数据
for i=1:40
for j=1:10
file_name = strcat(data_path, '/', 's', num2str(i), '/', num2str(j), '.pgm');
img = imread(file_name);
img = double(img(:)');
orl_data(i,j,:) = (img - mean(img))/std(img); % 标准化处理
end
end
%% KL变换
% 计算平均脸
mean_face = mean(orl_data,2);
mean_face = reshape(mean_face, 40, []);
% 计算协方差矩阵
X = reshape(orl_data, [], 10);
X = X';
C = cov(X);
% 计算特征值和特征向量
[V,D] = eig(C);
% 特征向量按照特征值大小排序
[d,ind] = sort(diag(D),'descend');
Ds = D(ind,ind);
Vs = V(:,ind);
% 选择前k个主成分
k = 20;
Vs = Vs(:,1:k);
Ds = Ds(1:k,1:k);
% 计算投影矩阵
P = Vs';
% 计算投影系数
proj_coef = P*(orl_data - repmat(mean_face, [1, 10]));
%% 训练
% 每个人的前N张图像作为训练集,剩下的作为测试集
N = 8;
train_data = proj_coef(:,1:N:end);
test_data = proj_coef;
test_data(:,1:N:end) = [];
% 计算训练集中每个人的平均脸
train_mean_face = mean(train_data,2);
% 计算每个人的投影系数的均值向量
train_mean_proj = zeros(20,40);
for i=1:40
train_mean_proj(:,i) = mean(train_data(:,i:N:i+N-1),2);
end
% 计算类内散度矩阵Sw和类间散度矩阵Sb
Sw = zeros(20,20);
Sb = zeros(20,20);
for i=1:40
Sw = Sw + cov(train_data(:,i:N:i+N-1)');
tmp = train_mean_proj(:,i) - train_mean_face;
Sb = Sb + N*tmp*tmp';
end
% 计算广义特征值和广义特征向量
[Vg,Dg] = eig(Sb,Sw);
[d,ind] = sort(diag(Dg),'descend');
Vgs = Vg(:,ind);
% 选择前K个主成分
K = 19;
Vgs = Vgs(:,1:K);
% 计算投影矩阵
W = P*Vgs;
% 计算训练集和测试集的投影系数
train_proj = W'*train_data;
test_proj = W'*test_data;
% 判别阈值
threshold = 1.7;
%% 测试
correct = 0;
for i=1:size(test_proj,2)
min_dist = Inf;
for j=1:40
dist = norm(train_proj(:,j) - test_proj(:,i));
if dist < min_dist
min_dist = dist;
min_index = j;
end
end
if min_dist < threshold
fprintf('The %dth test image is recognized as the %dth person.\n', i, min_index);
correct = correct + 1;
else
fprintf('The %dth test image is not recognized.\n', i);
end
end
% 计算识别率
accuracy = correct / size(test_proj,2);
fprintf('The accuracy is %.2f%%.\n', accuracy*100);
```
注:代码中的KL变换指的是离散KL变换,也称为PCA。
matlab人脸检测多种算法代码
以下是几种常见的 Matlab 人脸检测算法的代码示例:
1. Viola-Jones 算法:
```matlab
% 加载分类器模型
faceDetector = vision.CascadeObjectDetector();
% 读取图像
img = imread('test.jpg');
% 检测人脸
bbox = step(faceDetector, img);
% 在图像上绘制矩形框
imgOut = insertShape(img, 'Rectangle', bbox);
% 显示结果
imshow(imgOut);
```
2. 基于 Haar 特征的人脸检测:
```matlab
% 加载分类器模型
faceDetector = vision.CascadeObjectDetector('ClassificationModel', 'haarcascade_frontalface_alt.xml');
% 读取图像
img = imread('test.jpg');
% 检测人脸
bbox = step(faceDetector, img);
% 在图像上绘制矩形框
imgOut = insertShape(img, 'Rectangle', bbox);
% 显示结果
imshow(imgOut);
```
3. 基于 LBP 特征的人脸检测:
```matlab
% 加载分类器模型
faceDetector = vision.CascadeObjectDetector('ClassificationModel', 'lbpcascade_frontalface.xml');
% 读取图像
img = imread('test.jpg');
% 检测人脸
bbox = step(faceDetector, img);
% 在图像上绘制矩形框
imgOut = insertShape(img, 'Rectangle', bbox);
% 显示结果
imshow(imgOut);
```
注意:以上代码仅供参考,具体实现可能会因为数据集、特征、参数等不同而有所差异。
阅读全文