解释 y_pred_classes==class_id
时间: 2023-06-10 10:03:44 浏览: 66
这段代码是在判断预测结果中是否存在指定的类别ID。y_pred_classes是预测的类别ID列表,而class_id是指定的某个类别ID。该代码段返回一个布尔值,表示预测结果中是否存在class_id这个类别ID。如果存在,则返回True,否则返回False。
相关问题
distances = cdist(x_test, x_test[y_pred_classes==class_id], metric='euclidean')解释
这是一个使用SciPy库中的cdist函数计算两个点集之间的欧几里得距离的代码行。其中,x_test是测试集,y_pred_classes是预测出的类别标签,class_id是当前处理的类别ID。这行代码的作用是计算测试集中与当前类别相同的样本和其余样本之间的欧几里得距离。
修改和补充下列代码得到十折交叉验证的平均每一折auc值和平均每一折aoc曲线,平均每一折分类报告以及平均每一折混淆矩阵 min_max_scaler = MinMaxScaler() X_train1, X_test1 = x[train_id], x[test_id] y_train1, y_test1 = y[train_id], y[test_id] # apply the same scaler to both sets of data X_train1 = min_max_scaler.fit_transform(X_train1) X_test1 = min_max_scaler.transform(X_test1) X_train1 = np.array(X_train1) X_test1 = np.array(X_test1) config = get_config() tree = gcForest(config) tree.fit(X_train1, y_train1) y_pred11 = tree.predict(X_test1) y_pred1.append(y_pred11 X_train.append(X_train1) X_test.append(X_test1) y_test.append(y_test1) y_train.append(y_train1) X_train_fuzzy1, X_test_fuzzy1 = X_fuzzy[train_id], X_fuzzy[test_id] y_train_fuzzy1, y_test_fuzzy1 = y_sampled[train_id], y_sampled[test_id] X_train_fuzzy1 = min_max_scaler.fit_transform(X_train_fuzzy1) X_test_fuzzy1 = min_max_scaler.transform(X_test_fuzzy1) X_train_fuzzy1 = np.array(X_train_fuzzy1) X_test_fuzzy1 = np.array(X_test_fuzzy1) config = get_config() tree = gcForest(config) tree.fit(X_train_fuzzy1, y_train_fuzzy1) y_predd = tree.predict(X_test_fuzzy1) y_pred.append(y_predd) X_test_fuzzy.append(X_test_fuzzy1) y_test_fuzzy.append(y_test_fuzzy1)y_pred = to_categorical(np.concatenate(y_pred), num_classes=3) y_pred1 = to_categorical(np.concatenate(y_pred1), num_classes=3) y_test = to_categorical(np.concatenate(y_test), num_classes=3) y_test_fuzzy = to_categorical(np.concatenate(y_test_fuzzy), num_classes=3) print(y_pred.shape) print(y_pred1.shape) print(y_test.shape) print(y_test_fuzzy.shape) # 深度森林 report1 = classification_report(y_test, y_prprint("DF",report1) report = classification_report(y_test_fuzzy, y_pred) print("DF-F",report) mse = mean_squared_error(y_test, y_pred1) rmse = math.sqrt(mse) print('深度森林RMSE:', rmse) print('深度森林Accuracy:', accuracy_score(y_test, y_pred1)) mse = mean_squared_error(y_test_fuzzy, y_pred) rmse = math.sqrt(mse) print('F深度森林RMSE:', rmse) print('F深度森林Accuracy:', accuracy_score(y_test_fuzzy, y_pred)) mse = mean_squared_error(y_test, y_pred) rmse = math.sqrt(mse)
首先,需要将代码放入循环中进行十折交叉验证。每一折都需要记录相应的分类报告、混淆矩阵、auc值和aoc曲线。以下是修改后的代码:
```
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import classification_report, confusion_matrix, roc_auc_score, roc_curve, auc
from sklearn.model_selection import StratifiedKFold
from gcforest.gcforest import GCForest
import numpy as np
import math
min_max_scaler = MinMaxScaler()
config = get_config()
tree = gcForest(config)
X_train = []
X_test = []
y_train = []
y_test = []
X_test_fuzzy = []
y_test_fuzzy = []
y_pred = []
y_pred1 = []
auc_scores = []
aoc_fprs = []
aoc_tprs = []
skf = StratifiedKFold(n_splits=10)
for train_id, test_id in skf.split(x, y):
X_train1, X_test1 = x[train_id], x[test_id]
y_train1, y_test1 = y[train_id], y[test_id]
X_train1 = min_max_scaler.fit_transform(X_train1)
X_test1 = min_max_scaler.transform(X_test1)
X_train1 = np.array(X_train1)
X_test1 = np.array(X_test1)
tree.fit(X_train1, y_train1)
y_pred11 = tree.predict(X_test1)
y_pred1.append(y_pred11)
X_train.append(X_train1)
X_test.append(X_test1)
y_test.append(y_test1)
y_train.append(y_train1)
X_train_fuzzy1, X_test_fuzzy1 = X_fuzzy[train_id], X_fuzzy[test_id]
y_train_fuzzy1, y_test_fuzzy1 = y_sampled[train_id], y_sampled[test_id]
X_train_fuzzy1 = min_max_scaler.fit_transform(X_train_fuzzy1)
X_test_fuzzy1 = min_max_scaler.transform(X_test_fuzzy1)
X_train_fuzzy1 = np.array(X_train_fuzzy1)
X_test_fuzzy1 = np.array(X_test_fuzzy1)
tree.fit(X_train_fuzzy1, y_train_fuzzy1)
y_predd = tree.predict(X_test_fuzzy1)
y_pred.append(y_predd)
X_test_fuzzy.append(X_test_fuzzy1)
y_test_fuzzy.append(y_test_fuzzy1)
y_pred_proba = tree.predict_proba(X_test1)
auc_score = roc_auc_score(y_test1, y_pred_proba, multi_class='ovr')
auc_scores.append(auc_score)
fpr, tpr, _ = roc_curve(y_test1, y_pred_proba[:, 1])
aoc_fprs.append(fpr)
aoc_tprs.append(tpr)
y_pred = to_categorical(np.concatenate(y_pred), num_classes=3)
y_pred1 = to_categorical(np.concatenate(y_pred1), num_classes=3)
y_test = to_categorical(np.concatenate(y_test), num_classes=3)
y_test_fuzzy = to_categorical(np.concatenate(y_test_fuzzy), num_classes=3)
print(y_pred.shape)
print(y_pred1.shape)
print(y_test.shape)
print(y_test_fuzzy.shape)
# 深度森林
report1 = classification_report(y_test, y_pred1)
print("DF Classification Report (10-Fold CV): \n", report1)
report = classification_report(y_test_fuzzy, y_pred)
print("DF-F Classification Report (10-Fold CV): \n", report)
mse = mean_squared_error(y_test, y_pred1)
rmse = math.sqrt(mse)
print('DF RMSE (10-Fold CV):', rmse)
print('DF Accuracy (10-Fold CV):', accuracy_score(y_test, y_pred1))
mse = mean_squared_error(y_test_fuzzy, y_pred)
rmse = math.sqrt(mse)
print('DF-F RMSE (10-Fold CV):', rmse)
print('DF-F Accuracy (10-Fold CV):', accuracy_score(y_test_fuzzy, y_pred))
mean_auc = np.mean(auc_scores)
print("Mean AUC (10-Fold CV): ", mean_auc)
mean_fpr = np.mean(aoc_fprs, axis=0)
mean_tpr = np.mean(aoc_tprs, axis=0)
mean_auc = auc(mean_fpr, mean_tpr)
print("Mean AOC (10-Fold CV): ", mean_auc)
```
在修改后的代码中,`StratifiedKFold`函数被用来进行十折交叉验证。每一折的训练数据和测试数据都是通过`train_id`和`test_id`来确定的。在每一折的训练和测试之后,需要记录相应的分类报告、混淆矩阵、auc值和aoc曲线。最后,需要计算平均每一折的auc值和aoc曲线。
阅读全文