3.研究两种固体燃料火箭推进器的燃烧效率,设两者都服从正态分布,并且已知燃烧率的标准差均近似地为0.05cm/s,取样本容量为n1 = n2 = 20,燃烧率的样本均值分布为x = 18cm/s,x = 24cm/s,设两样本独立,求两燃烧率总体均值差u1-u2的置信水平为0.99的置信区间。
时间: 2024-03-28 08:39:17 浏览: 112
根据中心极限定理,样本均值$x_1$和$x_2$的差值$(x_1 - x_2)$也服从正态分布,均值为总体均值差$u_1 - u_2$,标准差为$\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$。其中,$\sigma_1$和$\sigma_2$分别是两种固体燃料的燃烧率的标准差,$n_1$和$n_2$分别是两种固体燃料的样本容量。
由于总体均值差$u_1 - u_2$的置信水平为0.99,所以根据正态分布的性质,有:
$$P(-2.576 \leq \frac{(x_1 - x_2) - (u_1 - u_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \leq 2.576) = 0.99$$
将样本容量$n_1 = n_2 = 20$,燃烧率的标准差$\sigma_1 = \sigma_2 = 0.05$cm/s,样本均值$x_1 = 18$cm/s,$x_2 = 24$cm/s代入上式,得到:
$$P(-3.745 \leq \frac{(18 - 24) - (u_1 - u_2)}{\sqrt{\frac{0.05^2}{20} + \frac{0.05^2}{20}}} \leq 3.745) = 0.99$$
化简可得:
$$P(5.872 \leq u_1 - u_2 \leq 11.872) = 0.99$$
因此,两燃烧率总体均值差$u_1-u_2$的置信水平为0.99的置信区间为$[5.872, 11.872]$。
阅读全文