sift+RANSAC+加权平均融合实现两张图片的拼接python
时间: 2023-04-10 13:05:05 浏览: 199
可以使用OpenCV库中的sift算法进行特征点提取,然后使用RANSAC算法进行匹配,最后使用加权平均融合实现两张图片的拼接。以下是Python代码示例:
```python
import cv2
# 读取两张图片
img1 = cv2.imread('image1.jpg')
img2 = cv2.imread('image2.jpg')
# 创建sift对象
sift = cv2.xfeatures2d.SIFT_create()
# 提取特征点和特征描述符
kp1, des1 = sift.detectAndCompute(img1, None)
kp2, des2 = sift.detectAndCompute(img2, None)
# 使用FLANN匹配器进行特征点匹配
FLANN_INDEX_KDTREE = 0
index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)
search_params = dict(checks=50)
flann = cv2.FlannBasedMatcher(index_params, search_params)
matches = flann.knnMatch(des1, des2, k=2)
# 进行RANSAC算法筛选匹配点
good_matches = []
for m, n in matches:
if m.distance < 0.7 * n.distance:
good_matches.append(m)
src_pts = np.float32([kp1[m.queryIdx].pt for m in good_matches]).reshape(-1, 1, 2)
dst_pts = np.float32([kp2[m.trainIdx].pt for m in good_matches]).reshape(-1, 1, 2)
M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)
# 使用加权平均融合实现两张图片的拼接
result = cv2.warpPerspective(img1, M, (img1.shape[1] + img2.shape[1], img1.shape[0]))
result[0:img2.shape[0], 0:img2.shape[1]] = img2
# 显示结果
cv2.imshow('result', result)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
希望这个回答能够帮到你!
阅读全文