pytorch 卷积神经网络
时间: 2023-09-26 09:11:39 浏览: 99
利用基于pytorch的卷积神经网络识别是否为奥特曼的项目
PyTorch 是一个广泛使用的深度学习框架,支持建立卷积神经网络(Convolutional Neural Network,CNN)模型。以下是一个简单的 PyTorch CNN 模型的示例代码:
``` python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.datasets as datasets
import torchvision.transforms as transforms
# 定义 CNN 模型
class CNN(nn.Module):
def __init__(self):
super(CNN, self).__init__()
self.conv1 = nn.Conv2d(3, 16, kernel_size=5, padding=2)
self.relu1 = nn.ReLU()
self.pool1 = nn.MaxPool2d(kernel_size=2)
self.conv2 = nn.Conv2d(16, 32, kernel_size=5, padding=2)
self.relu2 = nn.ReLU()
self.pool2 = nn.MaxPool2d(kernel_size=2)
self.fc1 = nn.Linear(32 * 8 * 8, 10)
def forward(self, x):
x = self.conv1(x)
x = self.relu1(x)
x = self.pool1(x)
x = self.conv2(x)
x = self.relu2(x)
x = self.pool2(x)
x = x.view(-1, 32 * 8 * 8)
x = self.fc1(x)
return x
# 加载 CIFAR10 数据集
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
trainset = datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=32, shuffle=True)
# 训练模型
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
net = CNN().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
for epoch in range(10):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data[0].to(device), data[1].to(device)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 100 == 99:
print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 100))
running_loss = 0.0
print('Finished Training')
```
在这个示例代码中,定义了一个简单的 CNN 模型,包含两个卷积层和两个池化层,最后连接一个全连接层。模型的训练部分则使用了 CIFAR10 数据集,使用交叉熵损失函数和随机梯度下降(SGD)优化器进行训练。
阅读全文