用RRT*算法写一个无人机三维空间的路径规划MATLAB程序
时间: 2024-05-11 08:19:10 浏览: 96
以下是一个基于RRT*算法的无人机三维空间路径规划MATLAB程序的示例:
```matlab
% 定义起始点和目标点
start_pos = [0, 0, 0];
goal_pos = [10, 10, 10];
% 定义空间边界和障碍物
xlim = [0, 20];
ylim = [0, 20];
zlim = [0, 20];
obstacles = [5, 5, 5, 2;
10, 10, 10, 3;
15, 15, 15, 4];
% 定义RRT*算法参数
delta_q = 1;
max_iter = 1000;
goal_bias = 0.2;
rrt_star_step_size = 0.1;
% 初始化RRT*树
tree.vertices = start_pos;
tree.edges = [];
% 开始迭代
for i = 1:max_iter
% 随机采样一个点
if rand() < goal_bias
q_rand = goal_pos;
else
q_rand = [randrange(xlim), randrange(ylim), randrange(zlim)];
end
% 寻找树中距离q_rand最近的节点
[q_near, q_near_idx] = nearest_neighbor(q_rand, tree.vertices);
% 在q_near和q_rand之间插入一个新节点q_new
q_new = new_state(q_near, q_rand, delta_q);
% 如果q_new不与障碍物相撞,则将其加入树中
if ~collision(q_near, q_new, obstacles, rrt_star_step_size)
% 对所有与q_new距离小于rrt_star_step_size的节点进行更新
[near_indices, near_dists] = near_neighbors(q_new, tree.vertices, rrt_star_step_size);
q_min = q_near;
c_min = cost(q_near) + dist(q_near, q_new);
for j = 1:length(near_indices)
q_near_j = tree.vertices(near_indices(j), :);
c_near_j = cost(q_near_j) + near_dists(j);
if ~collision(q_near_j, q_new, obstacles, rrt_star_step_size) && c_near_j < c_min
q_min = q_near_j;
c_min = c_near_j;
end
end
% 更新q_new的父节点和代价
tree.vertices = [tree.vertices; q_new];
tree.edges = [tree.edges; q_min, q_new];
cost_from_start = cost(q_min) + dist(q_min, q_new);
cost_to_goal = dist(q_new, goal_pos);
tree.costs = [tree.costs; cost_from_start, cost_to_goal];
tree.parents = [tree.parents; q_near_idx];
% 如果q_new与目标点的距离小于rrt_star_step_size,则路径规划完成
if dist(q_new, goal_pos) < rrt_star_step_size
path = [q_new];
parent_idx = length(tree.parents);
while parent_idx > 0
path = [tree.vertices(parent_idx, :); path];
parent_idx = tree.parents(parent_idx);
end
break;
end
end
end
% 绘制结果
figure;
hold on;
plot3(start_pos(1), start_pos(2), start_pos(3), 'go', 'MarkerSize', 10, 'LineWidth', 2);
plot3(goal_pos(1), goal_pos(2), goal_pos(3), 'ro', 'MarkerSize', 10, 'LineWidth', 2);
for i = 1:size(obstacles, 1)
draw_sphere(obstacles(i, 1:3), obstacles(i, 4));
end
for i = 1:size(tree.edges, 1)
plot3(tree.edges(i, [1, 4]), tree.edges(i, [2, 5]), tree.edges(i, [3, 6]), '-b', 'LineWidth', 1);
end
plot3(path(:, 1), path(:, 2), path(:, 3), '-r', 'LineWidth', 2);
axis equal;
view(-30, 30);
% 辅助函数
function r = randrange(lim)
r = lim(1) + rand() * (lim(2) - lim(1));
end
function [q_near, q_near_idx] = nearest_neighbor(q, vertices)
[dists, idx] = pdist2(vertices, q, 'euclidean', 'Smallest', 1);
q_near = vertices(idx, :);
q_near_idx = idx(1);
end
function q_new = new_state(q_near, q_rand, delta_q)
direction = (q_rand - q_near) / norm(q_rand - q_near);
q_new = q_near + delta_q * direction;
end
function c = cost(q)
global tree;
idx = find(all(tree.vertices == q, 2));
c = tree.costs(idx, 1);
end
function d = dist(q1, q2)
d = norm(q1 - q2);
end
function [indices, dists] = near_neighbors(q, vertices, r)
[dists, indices] = pdist2(vertices, q, 'euclidean', 'Smallest', inf);
indices = indices(dists <= r);
dists = dists(dists <= r);
end
function c = collision(q1, q2, obstacles, step_size)
for i = 1:size(obstacles, 1)
c = sphere_collision(q1, q2, obstacles(i, 1:3), obstacles(i, 4), step_size);
if c
return;
end
end
c = false;
end
function c = sphere_collision(q1, q2, c, r, step_size)
d = q2 - q1;
n = ceil(norm(d) / step_size);
for i = 0:n
q = q1 + i * step_size * d / norm(d);
if norm(q - c) < r
c = true;
return;
end
end
c = false;
end
function draw_sphere(c, r)
[x, y, z] = sphere();
x = x * r + c(1);
y = y * r + c(2);
z = z * r + c(3);
surf(x, y, z, 'FaceColor', [0.5, 0.5, 0.5], 'EdgeColor', 'none', 'FaceAlpha', 0.5);
end
```
这个程序使用了一些辅助函数,例如nearest_neighbor函数用于寻找距离某个点最近的树节点,new_state函数用于在树中插入一个新节点,collision函数用于检查节点之间是否存在障碍物等等。在运行程序之前,需要将这些辅助函数定义在程序之前或保存在单独的文件中。
阅读全文