使用phm2010数据集进行刀具磨损量预测的matlab代码
时间: 2024-05-04 10:18:42 浏览: 278
通过对图形处理,实现对刀具磨损区域的识别和处理,matlab源码.zip
5星 · 资源好评率100%
以下是使用phm2010数据集进行刀具磨损量预测的matlab代码示例:
```matlab
% 导入数据
data = readtable('phm2010_dataset.csv');
% 提取特征
X = data{:, 2:end-1};
y = data{:, end};
% 数据划分
cv = cvpartition(size(X, 1), 'HoldOut', 0.3);
X_train = X(training(cv), :);
y_train = y(training(cv), :);
X_test = X(test(cv), :);
y_test = y(test(cv), :);
% 构建模型
model = fitlm(X_train, y_train);
% 测试模型
y_pred = predict(model, X_test);
% 计算误差
rmse = sqrt(mean((y_test - y_pred).^2));
mae = mean(abs(y_test - y_pred));
% 显示结果
disp(['RMSE: ', num2str(rmse)]);
disp(['MAE: ', num2str(mae)]);
```
其中,`phm2010_dataset.csv`是phm2010数据集的csv文件,包含了刀具磨损量和各种机器学习特征。代码中使用线性回归模型进行预测,并计算了均方根误差(RMSE)和平均绝对误差(MAE)作为评估指标。根据具体情况,你可能需要调整模型和特征选择方法来获得更好的预测性能。
阅读全文