用python写一个程序,要求为通过自适应中值滤波加局部自适应阈值对Canny算法改进的程序
时间: 2024-03-31 16:38:51 浏览: 56
好的,您的要求是编写一个通过自适应中值滤波加局部自适应阈值对Canny算法改进的程序,以下是一份可能符合您要求的Python程序:
```python
import cv2
import numpy as np
# 读取图像
img = cv2.imread('input.jpg', 0)
# 自适应中值滤波
def adaptive_median_filter(img, size):
height, width = img.shape
result = np.zeros((height, width), dtype=np.uint8)
for i in range(height):
for j in range(width):
filter_size = 3
while filter_size <= size:
offset = filter_size // 2
roi = img[max(0, i-offset):min(height, i+offset+1), max(0, j-offset):min(width, j+offset+1)]
median = np.median(roi)
if img[i, j] > median and median > np.min(roi) and median < np.max(roi):
result[i, j] = img[i, j]
break
else:
filter_size += 2
else:
result[i, j] = median
return result
# 局部自适应阈值
def local_adaptive_threshold(img, ksize, c):
img_mean = cv2.blur(img, (ksize, ksize))
img_sub = img - img_mean
img_sub_mean = cv2.blur(img_sub * img_sub, (ksize, ksize))
img_std = np.sqrt(img_sub_mean)
return cv2.threshold(img, img_mean - c * img_std, 255, cv2.THRESH_BINARY)[1]
# Canny算法改进
def canny_improved(img):
img_median = adaptive_median_filter(img, 7)
img_threshold = local_adaptive_threshold(img_median, 3, 0.1)
return cv2.Canny(img_threshold, 100, 200)
# 显示结果
cv2.imshow('Input', img)
cv2.imshow('Output', canny_improved(img))
cv2.waitKey(0)
cv2.destroyAllWindows()
```
该程序使用OpenCV库实现了自适应中值滤波和局部自适应阈值,然后将处理后的图像输入到Canny算法中,得到改进后的边缘检测结果。您可以将程序中的`input.jpg`替换为您想要处理的图像,然后运行程序查看结果。
阅读全文