C++三维获得点群最优最小路线 源代码
时间: 2023-07-15 13:12:04 浏览: 84
maltab源代码--改进蚁群算法三维最优路径.rar
以下是一个简单的C++程序,用于计算三维点云数据的最优最小路径。该程序使用了遗传算法来寻找最优解。
```c++
#include <iostream>
#include <vector>
#include <cmath>
#include <algorithm>
#include <ctime>
#include <cstdlib>
using namespace std;
// 三维点结构体
struct Point {
double x, y, z;
};
// 遗传算法参数
const int POPULATION_SIZE = 100; // 种群大小
const int MAX_GENERATIONS = 1000; // 最大迭代次数
const double MUTATION_RATE = 0.01; // 变异率
const double CROSSOVER_RATE = 0.8; // 杂交率
// 三维欧几里得距离
double distance(Point a, Point b) {
double dx = a.x - b.x;
double dy = a.y - b.y;
double dz = a.z - b.z;
return sqrt(dx*dx + dy*dy + dz*dz);
}
// 计算路径长度
double pathLength(vector<Point>& path) {
double length = 0;
for (int i = 1; i < path.size(); i++) {
length += distance(path[i-1], path[i]);
}
return length;
}
// 随机生成一个点群
vector<Point> generatePoints(int numPoints) {
vector<Point> points(numPoints);
for (int i = 0; i < numPoints; i++) {
points[i].x = rand() % 1000;
points[i].y = rand() % 1000;
points[i].z = rand() % 1000;
}
return points;
}
// 生成一个随机个体
vector<int> generateIndividual(int numPoints) {
vector<int> individual(numPoints);
for (int i = 0; i < numPoints; i++) {
individual[i] = i;
}
random_shuffle(individual.begin(), individual.end());
return individual;
}
// 评估个体适应度
double evaluateFitness(vector<int>& individual, vector<Point>& points) {
vector<Point> path(points.size());
for (int i = 0; i < individual.size(); i++) {
path[i] = points[individual[i]];
}
return 1.0 / pathLength(path);
}
// 选择一个个体
vector<int> selectIndividual(vector<vector<int>>& population, vector<Point>& points) {
// 随机选择两个个体
int index1 = rand() % population.size();
int index2 = rand() % population.size();
// 比较适应度,返回适应度更高的个体
double fitness1 = evaluateFitness(population[index1], points);
double fitness2 = evaluateFitness(population[index2], points);
if (fitness1 > fitness2) {
return population[index1];
} else {
return population[index2];
}
}
// 变异操作
void mutate(vector<int>& individual) {
for (int i = 0; i < individual.size(); i++) {
if (rand()/(double)RAND_MAX < MUTATION_RATE) {
int j = rand() % individual.size();
swap(individual[i], individual[j]);
}
}
}
// 杂交操作
void crossover(vector<int>& parent1, vector<int>& parent2, vector<int>& child) {
// 随机选择杂交点
int crossoverPoint1 = rand() % parent1.size();
int crossoverPoint2 = rand() % parent1.size();
if (crossoverPoint1 > crossoverPoint2) {
swap(crossoverPoint1, crossoverPoint2);
}
// 复制父代1中的部分基因
for (int i = crossoverPoint1; i <= crossoverPoint2; i++) {
child[i] = parent1[i];
}
// 复制父代2中的剩余基因
int j = crossoverPoint2 + 1;
for (int i = 0; i < parent2.size(); i++) {
if (find(child.begin(), child.end(), parent2[i]) == child.end()) {
child[j] = parent2[i];
j++;
}
}
}
// 遗传算法主函数
vector<Point> geneticAlgorithm(vector<Point>& points) {
// 随机生成初始种群
vector<vector<int>> population(POPULATION_SIZE);
for (int i = 0; i < POPULATION_SIZE; i++) {
population[i] = generateIndividual(points.size());
}
// 迭代
for (int generation = 0; generation < MAX_GENERATIONS; generation++) {
// 计算种群适应度
vector<double> fitnesses(POPULATION_SIZE);
for (int i = 0; i < POPULATION_SIZE; i++) {
fitnesses[i] = evaluateFitness(population[i], points);
}
// 选择下一代种群
vector<vector<int>> newPopulation(POPULATION_SIZE);
for (int i = 0; i < POPULATION_SIZE; i++) {
// 选择两个个体进行杂交
vector<int> parent1 = selectIndividual(population, points);
vector<int> parent2 = selectIndividual(population, points);
vector<int> child(points.size());
if (rand()/(double)RAND_MAX < CROSSOVER_RATE) {
crossover(parent1, parent2, child);
} else {
child = parent1;
}
mutate(child);
newPopulation[i] = child;
}
// 更新种群
population = newPopulation;
}
// 找到最优路径
double bestFitness = -1;
vector<int> bestIndividual;
for (int i = 0; i < POPULATION_SIZE; i++) {
double fitness = evaluateFitness(population[i], points);
if (fitness > bestFitness) {
bestFitness = fitness;
bestIndividual = population[i];
}
}
// 构造最优路径
vector<Point> path(points.size());
for (int i = 0; i < bestIndividual.size(); i++) {
path[i] = points[bestIndividual[i]];
}
return path;
}
int main() {
// 随机生成点群
vector<Point> points = generatePoints(10);
// 计算最优路径
vector<Point> path = geneticAlgorithm(points);
// 输出结果
cout << "Path: ";
for (int i = 0; i < path.size(); i++) {
cout << "(" << path[i].x << ", " << path[i].y << ", " << path[i].z << ")";
if (i < path.size() - 1) {
cout << " -> ";
}
}
cout << endl;
return 0;
}
```
请注意,这只是一个简单的实现,并且可能不是最优的。您可以根据需要进行修改和优化。
阅读全文