请解释一下 def forward(self, input_text, positive_text, negative_text): distance_positive = F.pairwise_distance(input_text, positive_text) distance_negative = F.pairwise_distance(input_text, negative_text) loss = torch.mean((distance_positive - distance_negative + self.margin).clamp(min=0)) return loss
时间: 2023-07-15 11:11:07 浏览: 75
pytorch forward两个参数实例
这段代码实现了一个三元组损失函数,在训练过程中用于学习如何将输入文本与正样本文本更接近,而与负样本文本更远离。其中,输入文本、正样本文本和负样本文本都被表示为向量形式,且经过了相同的文本编码器得到。
具体来说,这段代码的功能如下:
1. 通过调用 PyTorch 中的 F.pairwise_distance 函数计算输入文本与正样本文本、输入文本与负样本文本之间的欧氏距离,得到 distance_positive 和 distance_negative。
2. 根据三元组损失函数的公式,计算损失值 loss。公式为:
loss = max(distance_positive - distance_negative + margin, 0)
其中,margin 是一个预先设定的常数,用于控制输入文本与正样本文本之间的距离与输入文本与负样本文本之间的距离之间的差异。如果两者之间的差异小于 margin,则损失值为 0;否则,损失值为两者之间的差异。
3. 最后,将损失值返回。在训练过程中,该损失函数会被作为模型的目标函数,通过反向传播来更新模型的参数,以使模型能够更好地区分输入文本和正负样本文本之间的差异。
阅读全文