定义一个损失函数用于一维Wasserstein AutoEncoders代码keras
时间: 2023-07-15 10:15:48 浏览: 68
一维Wasserstein AutoEncoders是一种基于Wasserstein距离的自编码器模型,损失函数需要包括重构误差和Wasserstein距离的计算。以下是一个基于Keras实现的一维Wasserstein AutoEncoders模型的损失函数定义:
```python
import tensorflow as tf
from tensorflow.keras import backend as K
from tensorflow.keras.losses import binary_crossentropy
from tensorflow.keras.layers import Input, Dense, Lambda
from tensorflow.keras.models import Model
def wasserstein_loss(y_true, y_pred):
return K.mean(y_true * y_pred)
def get_encoder_decoder(input_dim, encoding_dim):
# Encoder
inputs = Input(shape=(input_dim,))
encoded = Dense(encoding_dim, activation='relu')(inputs)
# Decoder
decoded = Dense(input_dim, activation='sigmoid')(encoded)
# Autoencoder
autoencoder = Model(inputs, decoded)
# Encoder only
encoder = Model(inputs, encoded)
# Decoder only
encoded_input = Input(shape=(encoding_dim,))
decoder_layer = autoencoder.layers[-1]
decoder = Model(encoded_input, decoder_layer(encoded_input))
return encoder, decoder, autoencoder
def get_discriminator(encoding_dim):
# Discriminator
encoded_input = Input(shape=(encoding_dim,))
x = Dense(128, activation='relu')(encoded_input)
x = Dense(128, activation='relu')(x)
x = Dense(128, activation='relu')(x)
validity = Dense(1, activation='linear')(x)
discriminator = Model(encoded_input, validity)
return discriminator
def get_WAE(input_dim, encoding_dim):
# Encoder, Decoder and Autoencoder
encoder, decoder, autoencoder = get_encoder_decoder(input_dim, encoding_dim)
# Discriminator
discriminator = get_discriminator(encoding_dim)
# Input
input_img = Input(shape=(input_dim,))
# Encoding
encoded = encoder(input_img)
# Decoding
decoded = decoder(encoded)
# Wasserstein distance
z_mean = Lambda(lambda x: K.mean(x, axis=0))(encoded)
z_var = Lambda(lambda x: K.var(x, axis=0))(encoded)
epsilon = tf.random.normal(shape=(K.shape(encoded)[0], encoding_dim), mean=0., stddev=1.)
z_sample = z_mean + K.exp(0.5 * z_var) * epsilon
validity_real = discriminator(encoded)
validity_fake = discriminator(z_sample)
wasserstein_distance = Lambda(lambda x: K.abs(K.mean(x[0]) - K.mean(x[1])))([validity_real, validity_fake])
# Model
wae_model = Model(input_img, decoded)
# Compile discriminator
discriminator.compile(loss=wasserstein_loss, optimizer='adam')
# Compile autoencoder
wae_model.add_loss(wasserstein_distance)
wae_model.compile(loss='binary_crossentropy', optimizer='adam')
return encoder, decoder, discriminator, wae_model
```
在这里,我们使用了Wasserstein距离作为判别器的损失函数,定义了一个自定义的损失函数`wasserstein_loss`。在WAE模型中,我们还需要计算重构误差和Wasserstein距离,因此我们将重构误差添加到自编码器的损失中,并在模型中使用Lambda层计算Wasserstein距离。
注意,在这个实现中,我们使用了一个简单的判别器模型,它只包含几个密集层。您可以根据需要修改它来适应更复杂的数据集和任务。
阅读全文