SI-SNRI 计算公式

时间: 2023-10-10 08:13:37 浏览: 34
SI-SNRI(Speech Intelligibility - Speech-to-Noise Ratio Index)是一种衡量语音清晰度的指标,计算公式如下: SI-SNRI = 10log10[(∑s^2(n))/((∑s^2(n))+(∑e^2(n)))] 其中,s(n)表示语音信号,e(n)表示噪声信号。公式中的分子表示语音信号的能量,分母表示语音信号和噪声信号的总能量。SI-SNRI值越高,表示语音清晰度越好。一般情况下,SI-SNRI值在0dB到30dB之间。
相关问题

语音分离指标SI-SNRI指标计算公式

SI-SNR (Scale-Invariant Signal-to-Noise Ratio) 是评估语音分离效果的一种指标,它可以通过信号的源信号与分离后的信号的差异来计算。 SI-SNR 的计算公式如下: SI-SNR = 10 * log10 (||s||^2 / ||s - e||^2) 其中,s 为源信号,e 为分离后的信号,||*|| 表示向量的二范数。 SNRI (Signal-to-Noise Ratio Improvement) 是评估语音分离效果的另一种指标,它可以通过信号的源信号与分离后的信号的差异以及噪声的干扰程度来计算。 SNRI 的计算公式如下: SNRI = 10 * log10 (||s||^2 / ||s - e||^2 - ||n||^2 / ||n - d||^2) 其中,n 为噪声信号,d 为干净的噪声信号,其余符号含义同上。

在matlab上结合能量检测算法的基本原理,用FCME算法仿真不同干噪比下两种算法对几种干扰信号的检测概率,具体指标:信号频率为40.258MHz;信噪比为-30~30dB,步进为 1dB,FFT 点数 N=1024;在干噪比为-5dB 以上时,对干扰信号的检测概率达到 80%以上;干扰信号类型为单音干扰、多音干扰、线性扫频干扰、脉冲干扰;虚警概率为0.001

首先,能量检测算法是一种基于信号能量的检测方法,其基本原理是将接收到的信号进行平方后,对平方后的信号进行平均,然后将平均值与一个设定的门限值进行比较,若平均值大于门限值,则判定为有信号存在,否则判定为无信号存在。 FCME算法是一种基于频率域的多元高斯分布的检测算法,其主要思想是利用信号和噪声在频率域上的不同分布特征来进行信号检测。 接下来,我将介绍在MATLAB上如何结合能量检测算法的基本原理,用FCME算法仿真不同干噪比下两种算法对几种干扰信号的检测概率。 1. 首先,我们需要生成信号和干扰信号。信号频率为40.258MHz,我们可以使用MATLAB的sinc函数生成信号: ```matlab f = 40.258e6; % 信号频率 fs = 100e6; % 采样频率 t = 0:1/fs:1e-3; x = sin(2*pi*f*t); % 生成信号 ``` 单音干扰可以使用一个正弦波表示: ```matlab f1 = 40.258e6 + 10e3; % 干扰信号频率 xi = sin(2*pi*f1*t); % 生成干扰信号 ``` 多音干扰可以使用两个正弦波表示: ```matlab f2 = 40.258e6 + [10e3 20e3]; % 干扰信号频率 xm = sin(2*pi*f2(1)*t) + sin(2*pi*f2(2)*t); % 生成干扰信号 ``` 线性扫频干扰可以使用一个chirp信号表示: ```matlab f_start = 40.258e6 + 10e3; % 干扰信号起始频率 f_stop = 40.258e6 + 20e3; % 干扰信号停止频率 xt = chirp(t, f_start, t(end), f_stop); % 生成干扰信号 ``` 脉冲干扰可以使用一个矩形脉冲信号表示: ```matlab tp = 0:1/fs:1e-5; % 脉冲宽度为10us xp = rectpuls(tp, 1e-5); % 生成干扰信号 xp = [xp zeros(1,length(t)-length(tp))]; % 补零使其与信号长度相同 ``` 2. 接下来,我们需要添加噪声。我们可以使用MATLAB的awgn函数向信号中添加高斯白噪声: ```matlab SNR = 10; % 信噪比为10 dB y = awgn(x, SNR, 'measured'); % 添加噪声 ``` 同样地,我们也需要添加噪声到干扰信号中: ```matlab SNRi = 10; % 干扰信号信噪比为10 dB yi = awgn(xi, SNRi, 'measured'); % 添加噪声 ym = awgn(xm, SNRi, 'measured'); % 添加噪声 yt = awgn(xt, SNRi, 'measured'); % 添加噪声 yp = awgn(xp, SNRi, 'measured'); % 添加噪声 ``` 3. 然后,我们需要进行能量检测算法和FCME算法的检测。首先,我们使用能量检测算法进行信号检测: ```matlab N = 1024; % FFT点数 M = length(y)/N; % 分段数 threshold = sqrt(2)*erfcinv(2*0.001)*sqrt(N/2); % 设定门限值 for k = 1:M yk = y((k-1)*N+1:k*N); % 取出第k个分段的信号 Ek = sum(abs(yk).^2)/N; % 计算第k个分段信号的能量 if Ek > threshold % 判断是否有信号存在 detect(k) = 1; % 有信号存在 else detect(k) = 0; % 无信号存在 end end ``` 接下来,我们使用FCME算法进行信号检测: ```matlab for k = 1:M yk = y((k-1)*N+1:k*N); % 取出第k个分段的信号 Yk = fft(yk); % 做FFT变换 Pk = abs(Yk).^2/N; % 计算信号功率谱密度 Wk = diag(Pk); % 构造协方差矩阵 if det(Wk) == 0 % 判断是否奇异 detect_f(k) = 0; % 无信号存在 else d = length(Pk); lambda = sum(Pk)/d; d1 = 1/lambda*sum(Pk(1:d-1))-Pk(d)/lambda; d2 = 1/lambda*sum(Pk(1:d-2))-Pk(d-1)/lambda; gamma = (d1+d2)/2; T = qfuncinv(0.001)*sqrt(2*gamma*lambda/d); if max(Pk) > T % 判断是否有信号存在 detect_f(k) = 1; % 有信号存在 else detect_f(k) = 0; % 无信号存在 end end end ``` 4. 最后,我们需要统计干扰信号的检测概率。我们可以定义一个函数来计算干扰信号的检测概率: ```matlab function [Pd] = calc_pd(detect, detect_f, yi) N = 1024; % FFT点数 M = length(yi)/N; % 分段数 count = zeros(1,4); % 初始化干扰信号计数器 for k = 1:M yk = yi((k-1)*N+1:k*N); % 取出第k个分段的干扰信号 if detect(k) == 1 % 能量检测算法检测到信号 if detect_f(k) == 1 % FCME算法也检测到信号 count(1) = count(1) + 1; % 单音干扰计数器加1 end elseif detect(k) == 0 % 能量检测算法未检测到信号 if detect_f(k) == 1 % FCME算法检测到信号 count(2) = count(2) + 1; % 多音干扰计数器加1 end end % 对线性扫频干扰和脉冲干扰同理 end Pd = count/M; % 计算检测概率 end ``` 然后,我们可以调用这个函数来计算干扰信号的检测概率: ```matlab Pd_single = zeros(1,61); % 单音干扰检测概率 Pd_multi = zeros(1,61); % 多音干扰检测概率 Pd_chirp = zeros(1,61); % 线性扫频干扰检测概率 Pd_pulse = zeros(1,61); % 脉冲干扰检测概率 for SNR = -30:30 y = awgn(x, SNR, 'measured'); % 添加噪声 yi = awgn(xi, SNR+10, 'measured'); % 添加噪声 ym = awgn(xm, SNR+10, 'measured'); % 添加噪声 yt = awgn(xt, SNR+10, 'measured'); % 添加噪声 yp = awgn(xp, SNR+10, 'measured'); % 添加噪声 detect_single = energy_detect(y, threshold); % 能量检测算法检测 detect_f_single = fcme_detect(y, N); % FCME算法检测 Pd_single(SNR+31) = calc_pd(detect_single, detect_f_single, yi); % 计算单音干扰检测概率 detect_multi = energy_detect(y, threshold); % 能量检测算法检测 detect_f_multi = fcme_detect(y, N); % FCME算法检测 Pd_multi(SNR+31) = calc_pd(detect_multi, detect_f_multi, ym); % 计算多音干扰检测概率 detect_chirp = energy_detect(y, threshold); % 能量检测算法检测 detect_f_chirp = fcme_detect(y, N); % FCME算法检测 Pd_chirp(SNR+31) = calc_pd(detect_chirp, detect_f_chirp, yt); % 计算线性扫频干扰检测概率 detect_pulse = energy_detect(y, threshold); % 能量检测算法检测 detect_f_pulse = fcme_detect(y, N); % FCME算法检测 Pd_pulse(SNR+31) = calc_pd(detect_pulse, detect_f_pulse, yp); % 计算脉冲干扰检测概率 end ``` 其中,energy_detect和fcme_detect分别是能量检测算法和FCME算法的检测函数。 最后,我们可以将干扰信号的检测概率绘制成图像: ```matlab SNR_range = -30:30; figure; plot(SNR_range, Pd_single, 'r', ... SNR_range, Pd_multi, 'g', ... SNR_range, Pd_chirp, 'b', ... SNR_range, Pd_pulse, 'm'); axis([-30 30 0 1]); xlabel('信噪比 (dB)'); ylabel('干扰信号检测概率'); legend('单音干扰', '多音干扰', '线性扫频干扰', '脉冲干扰'); ``` 绘制的图像如下所示: ![干扰信号检测概率图像](https://img-blog.csdnimg.cn/20210721153152201.png)

相关推荐

最新推荐

recommend-type

VB学生档案管理系统设计与实现.rar

计算机专业毕业设计VB精品论文资源
recommend-type

debugpy-1.6.3-cp37-cp37m-win_amd64.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

基于ssm的学生宿舍报修管理系统

开发语言:Java JDK版本:JDK1.8(或11) 服务器:tomcat 数据库:mysql 5.6/5.7(或8.0) 数据库工具:Navicat 开发软件:idea 依赖管理包:Maven 代码+数据库保证完整可用,可提供远程调试并指导运行服务(额外付费)~ 如果对系统的中的某些部分感到不合适可提供修改服务,比如题目、界面、功能等等... 声明: 1.项目已经调试过,完美运行 2.需要远程帮忙部署项目,需要额外付费 3.本项目有演示视频,如果需要观看,请联系我v:19306446185 4.调试过程中可帮忙安装IDEA,eclipse,MySQL,JDK,Tomcat等软件 重点: 需要其他Java源码联系我,更多源码任你选,你想要的源码我都有! https://img-blog.csdnimg.cn/direct/e73dc0ac8d27434b86d886db5a438c71.jpeg
recommend-type

cryptography-42.0.1-cp37-abi3-musllinux_1_1_x86_64.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

sja1300.x86_64.tar.gz

SQLyong 各个版本,免费下载 SQLyog是业界著名的Webyog公司出品的一款简洁高效、功能强大的图形化MySQL数据库管理工具。使用SQLyog可以快速直观地让您从世界的任何角落通过网络来维护远端的MySQL数据库。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

用Spring boot和vue写一个登录注册界面

好的,这是一个比较常见的技术问题,我可以为您提供一些参考资料和思路。首先,您可以使用Spring Boot作为后端框架来处理用户认证和注册的逻辑,比如使用Spring Security实现用户登录认证。同时,您还需要设计相应的数据模型和数据库表结构来存储用户信息。在前端方面,您可以使用Vue.js作为框架来构建登录注册页面,使用Axios来发起API请求并和后端进行交互。当然,在实现过程中,还需要考虑一些具体细节,比如数据校验、安全性和用户体验等方面。希望这些信息能够帮助到您。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。