编写一个用SVM分类MNIST手写集的代码
时间: 2023-03-27 17:05:10 浏览: 333
可以的,以下是一个用SVM分类MNIST手写集的Python代码:
```python
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score
# 加载MNIST手写数字数据集
digits = datasets.load_digits()
# 获取数据和标签
X = digits.data
y = digits.target
# 将数据集分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.2, random_state=42)
# 创建SVM分类器
clf = SVC(kernel='linear', C=1)
# 训练模型
clf.fit(X_train, y_train)
# 预测测试集
y_pred = clf.predict(X_test)
# 计算准确率
acc = accuracy_score(y_test, y_pred)
print("准确率:", acc)
```
这个代码使用了SVM分类器来对MNIST手写数字数据集进行分类,其中使用了线性核函数和C=1的参数。最后输出了测试集的准确率。
相关问题
编写一个用SVM分类MNIST手写集带有迭代循环的代码
可以的,以下是一个用SVM分类MNIST手写集的带有迭代循环的代码示例:
```python
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score
# 加载MNIST手写数字数据集
digits = datasets.load_digits()
X = digits.data
y = digits.target
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.2, random_state=42)
# 定义SVM分类器
clf = SVC(kernel='linear')
# 迭代训练模型
for i in range(10):
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
acc = accuracy_score(y_test, y_pred)
print(f"Iteration {i+1}: Accuracy = {acc}")
```
这个代码使用SVM分类器对MNIST手写数字数据集进行分类,并使用迭代循环来训练模型。在每次迭代中,模型都会在训练集上进行拟合,并在测试集上进行预测,然后计算准确率。最终输出每次迭代的准确率。
编写一个用SVM分类MNIST手写集带有batch的迭代循环的代码
可以的,以下是一个用SVM分类MNIST手写集带有batch的迭代循环的代码示例:
```python
from sklearn import svm
from sklearn.datasets import fetch_openml
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
import numpy as np
# 加载MNIST数据集
mnist = fetch_openml('mnist_784')
X = mnist.data.astype('float32')
y = mnist.target.astype('int32')
# 数据归一化
X /= 255.
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.2, random_state=42)
# 定义SVM分类器
clf = svm.SVC(kernel='linear', C=1, gamma='auto')
# 定义batch大小和迭代次数
batch_size = 100
n_iterations = 100
# 迭代训练
for iteration in range(n_iterations):
# 随机选择batch大小的样本
indices = np.random.randint(, len(X_train), batch_size)
X_batch = X_train[indices]
y_batch = y_train[indices]
# 训练SVM分类器
clf.fit(X_batch, y_batch)
# 计算训练集和测试集的准确率
y_train_pred = clf.predict(X_train)
y_test_pred = clf.predict(X_test)
train_accuracy = accuracy_score(y_train, y_train_pred)
test_accuracy = accuracy_score(y_test, y_test_pred)
# 打印训练过程中的准确率
print("Iteration:", iteration+1, "Train accuracy:", train_accuracy, "Test accuracy:", test_accuracy)
```
希望能对你有所帮助!
阅读全文