yolov5损失函数介绍
时间: 2023-09-28 11:03:35 浏览: 82
Yolov5改进之更改损失函数(EIOU、SIOU).pdf
YoloV5使用的损失函数是基于Focal Loss和GIoU Loss的组合损失函数。其中,Focal Loss主要用于解决类别不平衡问题,而GIoU Loss则主要用于解决目标框回归问题。
具体来说,YoloV5的损失函数由以下三部分组成:
1.分类损失:使用Focal Loss作为分类损失函数,可以有效地处理类别不平衡问题,公式如下:
$FL(p_t) = -(1-p_t)^\gamma log(p_t)$
其中,$p_t$表示模型预测的概率,$\gamma$为调节参数,$FL$为Focal Loss。
2.定位损失:使用GIoU Loss作为定位损失函数,可以有效地优化目标框的回归,公式如下:
$GIoU = IoU - \frac{(c-a_r)(d-b_r)}{c·d-a_r·b_r+ \epsilon}$
其中,$IoU$表示预测框和真实框的IoU,$a_r,b_r,c,d$为分别为预测框和真实框的左上角和右下角坐标,$\epsilon$为一个较小的常数,避免出现除数为0的情况。
3.对象损失:使用BCE Loss作为对象损失函数,可以有效地处理背景和目标之间的区别,公式如下:
$BCE(t,p) = -tlog(p)-(1-t)log(1-p)$
其中,$t$表示目标是否存在(存在为1,不存在为0),$p$为模型预测的概率,$BCE$为二分类交叉熵损失。
最终的损失函数为分类损失、定位损失和对象损失的加权和,其中分类损失和对象损失的权重为1,定位损失的权重为5。
阅读全文