salary_ranges = { "10000以下": 0, "10000-50000": 0, "50000-100000": 0, "100000-200000": 0, "200000以上": 0 } # 统计各个薪资范围的数量 for salary in data: # print(data[salary]) annual_salary = classify_salary(salary) if annual_salary is not None: if annual_salary < 10000: salary_ranges["10000以下"] += data[salary] elif 10000 <= annual_salary < 50000: salary_ranges["10000-50000"] += data[salary] elif 50000 <= annual_salary < 100000: salary_ranges["50000-100000"] += data[salary] elif 100000 <= annual_salary < 200000: salary_ranges["100000-200000"] += data[salary] else: salary_ranges["200000以上"] += data[salary] salary_pie = ( Pie() .add( series_name="年薪分布饼状图", data_pair=[(key, value) for key, value in salary_ranges.items()], radius=["40%", "75%"], ) .set_global_opts( title_opts=opts.TitleOpts( title="年薪分布饼状图", pos_left="center", title_textstyle_opts=opts.TextStyleOpts(font_weight="bold"), ), legend_opts=opts.LegendOpts( orient="vertical", pos_top="middle", pos_right="5%", item_width=20, item_height=10, ), ) .set_series_opts( label_opts=opts.LabelOpts(formatter="{b}: {c}", font_size=12, font_weight="bold") ) ) salary_pie.width = "100%vh" salary_pie.height = "100vh" salary_pie.render('templates/salary_pie_chart.html')

时间: 2023-11-22 10:52:08 浏览: 158
这段代码看起来像是用 Python 的 pyecharts 库来制作一个年薪分布饼状图。首先,定义了一个字典 `salary_ranges`,其中包含了不同的薪资范围和初始值。然后通过循环遍历数据集,将薪资按照不同范围进行分类,统计每个范围的数量。接着,使用 Pyecharts 中的 Pie 类来创建一个饼状图,设置数据系列、半径、标题、图例等参数,最后将饼状图渲染到模板文件 `salary_pie_chart.html`。
相关问题

def classify_salary(salary): if '·' in salary: salary_parts = salary.split('·') if len(salary_parts) == 2: salary_range = salary_parts[0].split('-') if len(salary_range) == 2: try: low_salary = float(salary_range[0]) high_salary = float(salary_range[1].replace('K', '')) # 移除额外字符 salary_multiplier = float(salary_parts[1].replace('薪', '')) annual_salary = ((low_salary + high_salary) / 2) * salary_multiplier * 1000 return annual_salary except ValueError: print(salary) return None

这是一个 Python 函数,其目的是将输入的薪资字符串转换为年薪。函数中的主要逻辑如下: 1. 首先判断薪资字符串中是否包含 '·' 字符,如果不包含则无法进行转换,返回 None。 2. 如果包含 '·' 字符,则将薪资字符串按照 '·' 进行拆分。 3. 如果拆分后的列表长度为 2,则说明薪资字符串中包含了薪资范围和薪资倍数两部分信息。 4. 将薪资范围部分按照 '-' 进行拆分,得到最低薪资和最高薪资。 5. 将最低薪资和最高薪资转换为 float 类型。 6. 将最高薪资中的 'K' 字符移除,并转换为 float 类型。 7. 将薪资倍数中的 '薪' 字符移除,并转换为 float 类型。 8. 根据公式 ((最低薪资 + 最高薪资) / 2) * 薪资倍数 * 1000 得到年薪。 9. 如果任意一个转换过程出现异常,则返回 None。 这个函数可以用于处理形如 "10-20K·12薪" 的薪资字符串,将其转换为年薪。

salary_range = salary.split('-') if len(salary_range) == 2: try: low_salary = float(salary_range[0]) high_salary = float(salary_range[1].replace('K', '')) # 移除额外字符 monthly_salary = (low_salary + high_salary) / 2 annual_salary = monthly_salary * 12 * 1000 return annual_salary except ValueError: print(salary) return None

这段代码是将输入的薪资范围字符串拆分成最低薪资和最高薪资,并计算其平均月薪和年薪。具体来说,它首先使用字符串的split方法将薪资范围字符串按照"-"符号拆分成两个子字符串,分别表示最低薪资和最高薪资。然后,它将最低薪资和最高薪资转换成浮点数类型,并计算它们的平均值作为月薪。接着,它将月薪乘以12(表示一年有12个月)和1000(将单位从千元转换成元),得到年薪,并将其返回。如果在转换过程中出现了ValueError异常,则会打印出薪资字符串并返回None。
阅读全文

相关推荐

请给我修改后的这份代码,使它的模型评价高于0.6 import pandas as pd from sklearn.neighbors import KNeighborsClassifier from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import train_test_split from sklearn.metrics import f1_score 读取训练集和测试集数据 data_hk = pd.read_csv("员工满意度_train.csv", engine='python') 填充缺失值 data_hk.fillna(0, inplace=True) data_hk = data_hk.drop(labels=['division'],axis=1) 将分类特征进行编码 encoder = LabelEncoder() data_hk['package'] = encoder.fit_transform(data_hk['package'].astype(str)) 划分训练集和验证集 X_train, X_test, y_train, y_test = train_test_split(data_hk.iloc[:, 0:-1], data_hk.iloc[:, -1], test_size=0.45, random_state=10) 模型训练 model = KNeighborsClassifier(n_neighbors=4) model.fit(X_train, y_train) 读取测试集数据 forecast_hk = pd.read_csv("员工满意度_test_nolabel.csv", engine='python') forecast_hk = forecast_hk.drop(labels=['division'],axis=1) forecast_hk.fillna(0, inplace=True) forecast_hk['package'] = encoder.transform(forecast_hk['package'].astype(str)) 在测试集上进行预测 y_predict = model.predict(forecast_hk) 将预测结果添加到测试集中 forecast_hk['salary'] = y_predict forecast_hk.to_csv("员工满意度_test_nolabel.csv", index=False) 在验证集上进行预测和评估 y_pred_test = model.predict(X_test) score = f1_score(y_test, y_pred_test, average='macro') print("模型评价(f1-score):", score)

大家在看

recommend-type

MotorContral.rar_VC++ 电机控制_上位机_电机_电机 上位机_电机vc上位机

这是电机控制方面上位机程序,需要vc++6.0开发,对学习电机控制很有帮助.
recommend-type

一种基于STM32的智能交通信号灯设计的研究.rar

一种基于STM32的智能交通信号灯设计的研究.rar
recommend-type

中国AI安防行业:Ambarella业绩反映AI需求强劲.zip

中国AI安防行业:Ambarella业绩反映AI需求强劲
recommend-type

【答题卡识别】 Hough变换答题卡识别【含Matlab源码 250期】.zip

Matlab领域上传的代码均可运行,亲测可用,直接替换数据即可,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作 图像识别:表盘识别、车道线识别、车牌识别、答题卡识别、电器识别、跌倒检测、动物识别、发票识别、服装识别、汉字识别、红绿灯识别、火灾检测、疾病分类、交通标志牌识别、口罩识别、裂缝识别、目标跟踪、疲劳检测、身份证识别、人民币识别、数字字母识别、手势识别、树叶识别、水果分级、条形码识别、瑕疵检测、芯片识别、指纹识别
recommend-type

挖掘机叉车工程车辆检测数据集VOC+YOLO格式5067张7类别.7z

集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):5067 标注数量(xml文件个数):5067 标注数量(txt文件个数):5067 标注类别数:7 标注类别名称:[“ConcreteTruck”,“Excavator”,“Forklift”,“Loader”,“Steamroller”,“Truck”,“Worker”] 对应中文名:[“混凝土运输车”、“挖掘机”、“叉车”、“装载机”、“压路机”、”卡车“、”工人“] 更多信息:https://blog.csdn.net/FL1623863129/article/details/142093679

最新推荐

recommend-type

基于springboot的酒店管理系统源码(java毕业设计完整源码+LW).zip

项目均经过测试,可正常运行! 环境说明: 开发语言:java JDK版本:jdk1.8 框架:springboot 数据库:mysql 5.7/8 数据库工具:navicat 开发软件:eclipse/idea
recommend-type

蓄电池与超级电容混合储能并网matlab simulink仿真模型 (1)混合储能采用低通滤波器进行功率分配,可有效抑制功率波动,并对超级电容的soc进行能量管理,soc较高时多放电,较低时少放电

蓄电池与超级电容混合储能并网matlab simulink仿真模型。 (1)混合储能采用低通滤波器进行功率分配,可有效抑制功率波动,并对超级电容的soc进行能量管理,soc较高时多放电,较低时少放电,soc较低时状态与其相反。 (2)蓄电池和超级电容分别采用单环恒流控制,研究了基于超级电容的SOC分区限值管理策略,分为放电下限区,放电警戒区,正常工作区,充电警戒区,充电上限区。 (3)采用三相逆变并网,将直流侧800v电压逆变成交流311v并网,逆变采用电压电流双闭环pi控制,pwm调制。 附有参考资料。
recommend-type

017 - 搞笑一句话台词.docx

017 - 搞笑一句话台词
recommend-type

基于微信小程序的购物系统+php后端毕业源码案例设计全部资料+详细文档.zip

【资源说明】 基于微信小程序的购物系统+php后端毕业源码案例设计全部资料+详细文档.zip 【备注】 1、该项目是个人高分项目源码,已获导师指导认可通过,答辩评审分达到95分 2、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 3、本项目适合计算机相关专业(人工智能、通信工程、自动化、电子信息、物联网等)的在校学生、老师或者企业员工下载使用,也可作为毕业设计、课程设计、作业、项目初期立项演示等,当然也适合小白学习进阶。 4、如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

基于APS.net的办公物品管理系统全部资料+详细文档.zip

【资源说明】 基于APS.net的办公物品管理系统全部资料+详细文档.zip 【备注】 1、该项目是个人高分项目源码,已获导师指导认可通过,答辩评审分达到95分 2、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 3、本项目适合计算机相关专业(人工智能、通信工程、自动化、电子信息、物联网等)的在校学生、老师或者企业员工下载使用,也可作为毕业设计、课程设计、作业、项目初期立项演示等,当然也适合小白学习进阶。 4、如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

WildFly 8.x中Apache Camel结合REST和Swagger的演示

资源摘要信息:"CamelEE7RestSwagger:Camel on EE 7 with REST and Swagger Demo" 在深入分析这个资源之前,我们需要先了解几个关键的技术组件,它们是Apache Camel、WildFly、Java DSL、REST服务和Swagger。下面是这些知识点的详细解析: 1. Apache Camel框架: Apache Camel是一个开源的集成框架,它允许开发者采用企业集成模式(Enterprise Integration Patterns,EIP)来实现不同的系统、应用程序和语言之间的无缝集成。Camel基于路由和转换机制,提供了各种组件以支持不同类型的传输和协议,包括HTTP、JMS、TCP/IP等。 2. WildFly应用服务器: WildFly(以前称为JBoss AS)是一款开源的Java应用服务器,由Red Hat开发。它支持最新的Java EE(企业版Java)规范,是Java企业应用开发中的关键组件之一。WildFly提供了一个全面的Java EE平台,用于部署和管理企业级应用程序。 3. Java DSL(领域特定语言): Java DSL是一种专门针对特定领域设计的语言,它是用Java编写的小型语言,可以在Camel中用来定义路由规则。DSL可以提供更简单、更直观的语法来表达复杂的集成逻辑,它使开发者能够以一种更接近业务逻辑的方式来编写集成代码。 4. REST服务: REST(Representational State Transfer)是一种软件架构风格,用于网络上客户端和服务器之间的通信。在RESTful架构中,网络上的每个资源都被唯一标识,并且可以使用标准的HTTP方法(如GET、POST、PUT、DELETE等)进行操作。RESTful服务因其轻量级、易于理解和使用的特性,已经成为Web服务设计的主流风格。 5. Swagger: Swagger是一个开源的框架,它提供了一种标准的方式来设计、构建、记录和使用RESTful Web服务。Swagger允许开发者描述API的结构,这样就可以自动生成文档、客户端库和服务器存根。通过Swagger,可以清晰地了解API提供的功能和如何使用这些API,从而提高API的可用性和开发效率。 结合以上知识点,CamelEE7RestSwagger这个资源演示了如何在WildFly应用服务器上使用Apache Camel创建RESTful服务,并通过Swagger来记录和展示API信息。整个过程涉及以下几个技术步骤: - 首先,需要在WildFly上设置和配置Camel环境,确保Camel能够运行并且可以作为路由引擎来使用。 - 其次,通过Java DSL编写Camel路由,定义如何处理来自客户端的HTTP请求,并根据请求的不同执行相应的业务逻辑。 - 接下来,使用Swagger来记录和描述创建的REST API。这包括定义API的路径、支持的操作、请求参数和响应格式等。 - 最后,通过Swagger提供的工具生成API文档和客户端代码,以及服务器端的存根代码,从而使得开发者可以更加便捷地理解和使用这些RESTful服务。 这个资源的实践演示对于想要学习如何在Java EE平台上使用Camel集成框架,并且希望提供和记录REST服务的开发者来说是非常有价值的。通过这种方式,开发者可以更加快速和简单地创建和管理Web服务,同时也增强了API的可访问性和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通

![【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通](https://docs.lammps.org/_images/lammps-gui-main.png) # 摘要 声子晶体作为一种具有周期性结构的材料,在声学隐身、微波和红外领域具有广泛的应用潜力。本文从基础理论出发,深入探讨了声子晶体的概念、物理模型和声子带结构的理论解析,同时介绍了声子晶体的数值模拟方法,包括有限元方法(FEM)、离散元方法(DEM)和分子动力学(MD)。本文还提供了一套完整的声子晶体模拟实践指南,涵盖了模拟前的准备工作、详细的模拟步骤以及结果验证和案例分析。此外,文章探讨了声子晶体模拟的高级技巧和拓展
recommend-type

2024-07-27怎么用python转换成农历日期

在Python中,可以使用`lunarcalendar`库来将公历日期转换为农历日期。首先,你需要安装这个库,可以通过pip命令进行安装: ```bash pip install lunarcalendar ``` 安装完成后,你可以使用以下代码将公历日期转换为农历日期: ```python from lunarcalendar import Converter, Solar, Lunar, DateNotExist # 创建一个公历日期对象 solar_date = Solar(2024, 7, 27) # 将公历日期转换为农历日期 try: lunar_date = Co
recommend-type

FDFS客户端Python库1.2.6版本发布

资源摘要信息:"FastDFS是一个开源的轻量级分布式文件系统,它对文件进行管理,功能包括文件存储、文件同步、文件访问等,适用于大规模文件存储和高并发访问场景。FastDFS为互联网应用量身定制,充分考虑了冗余备份、负载均衡、线性扩容等机制,保证系统的高可用性和扩展性。 FastDFS 架构包含两个主要的角色:Tracker Server 和 Storage Server。Tracker Server 作用是负载均衡和调度,它接受客户端的请求,为客户端提供文件访问的路径。Storage Server 作用是文件存储,一个 Storage Server 中可以有多个存储路径,文件可以存储在不同的路径上。FastDFS 通过 Tracker Server 和 Storage Server 的配合,可以完成文件上传、下载、删除等操作。 Python 客户端库 fdfs-client-py 是为了解决 FastDFS 文件系统在 Python 环境下的使用。fdfs-client-py 使用了 Thrift 协议,提供了文件上传、下载、删除、查询等接口,使得开发者可以更容易地利用 FastDFS 文件系统进行开发。fdfs-client-py 通常作为 Python 应用程序的一个依赖包进行安装。 针对提供的压缩包文件名 fdfs-client-py-master,这很可能是一个开源项目库的名称。根据文件名和标签“fdfs”,我们可以推测该压缩包包含的是 FastDFS 的 Python 客户端库的源代码文件。这些文件可以用于构建、修改以及扩展 fdfs-client-py 功能以满足特定需求。 由于“标题”和“描述”均与“fdfs-client-py-master1.2.6.zip”有关,没有提供其它具体的信息,因此无法从标题和描述中提取更多的知识点。而压缩包文件名称列表中只有一个文件“fdfs-client-py-master”,这表明我们目前讨论的资源摘要信息是基于对 FastDFS 的 Python 客户端库的一般性了解,而非基于具体文件内容的分析。 根据标签“fdfs”,我们可以深入探讨 FastDFS 相关的概念和技术细节,例如: - FastDFS 的分布式架构设计 - 文件上传下载机制 - 文件同步机制 - 元数据管理 - Tracker Server 的工作原理 - Storage Server 的工作原理 - 容错和数据恢复机制 - 系统的扩展性和弹性伸缩 在实际使用中,开发者可以通过 fdfs-client-py 库来与 FastDFS 文件系统进行交互,利用其提供的 API 接口实现文件的存储、管理等功能,从而开发出高效、可靠的文件处理应用。开发者可以根据项目的实际需求,选择合适的 FastDFS 版本,并根据官方文档进行安装、配置及优化,确保系统稳定运行。 总的来说,fdfs-client-py 是 FastDFS 文件系统与 Python 应用之间的一座桥梁,它使得开发者能够更加方便地将 FastDFS 集成到基于 Python 开发的应用中,发挥出 FastDFS 在文件管理方面的优势。"